cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352035 Sum of the 7th powers of the odd proper divisors of n.

This page as a plain text file.
%I A352035 #19 Oct 11 2023 03:54:54
%S A352035 0,1,1,1,1,2188,1,1,2188,78126,1,2188,1,823544,80313,1,1,4785157,1,
%T A352035 78126,825731,19487172,1,2188,78126,62748518,4785157,823544,1,
%U A352035 170939688,1,1,19489359,410338674,901669,4785157,1,893871740,62750705,78126,1,1801914272,1
%N A352035 Sum of the 7th powers of the odd proper divisors of n.
%H A352035 Seiichi Manyama, <a href="/A352035/b352035.txt">Table of n, a(n) for n = 1..10000</a>
%H A352035 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352035 a(n) = Sum_{d|n, d<n, d odd} d^7.
%F A352035 G.f.: Sum_{k>=1} (2*k-1)^7 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352035 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A352035 a(n) = A321811(n) - n^7*A000035(n).
%F A352035 Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)-1)/16 = 0.0002548347... . (End)
%e A352035 a(10) = 78126; a(10) = Sum_{d|10, d<10, d odd} d^7 = 1^7 + 5^7 = 78126.
%t A352035 f[2, e_] := 1; f[p_, e_] := (p^(7*e+7) - 1)/(p^7 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^7, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%Y A352035 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), this sequence (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y A352035 Cf. A000035, A013666, A321811.
%K A352035 nonn,easy
%O A352035 1,6
%A A352035 _Wesley Ivan Hurt_, Mar 01 2022