This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352035 #19 Oct 11 2023 03:54:54 %S A352035 0,1,1,1,1,2188,1,1,2188,78126,1,2188,1,823544,80313,1,1,4785157,1, %T A352035 78126,825731,19487172,1,2188,78126,62748518,4785157,823544,1, %U A352035 170939688,1,1,19489359,410338674,901669,4785157,1,893871740,62750705,78126,1,1801914272,1 %N A352035 Sum of the 7th powers of the odd proper divisors of n. %H A352035 Seiichi Manyama, <a href="/A352035/b352035.txt">Table of n, a(n) for n = 1..10000</a> %H A352035 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>. %F A352035 a(n) = Sum_{d|n, d<n, d odd} d^7. %F A352035 G.f.: Sum_{k>=1} (2*k-1)^7 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022 %F A352035 From _Amiram Eldar_, Oct 11 2023: (Start) %F A352035 a(n) = A321811(n) - n^7*A000035(n). %F A352035 Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)-1)/16 = 0.0002548347... . (End) %e A352035 a(10) = 78126; a(10) = Sum_{d|10, d<10, d odd} d^7 = 1^7 + 5^7 = 78126. %t A352035 f[2, e_] := 1; f[p_, e_] := (p^(7*e+7) - 1)/(p^7 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^7, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *) %Y A352035 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), this sequence (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10). %Y A352035 Cf. A000035, A013666, A321811. %K A352035 nonn,easy %O A352035 1,6 %A A352035 _Wesley Ivan Hurt_, Mar 01 2022