cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352036 Sum of the 8th powers of the odd proper divisors of n.

This page as a plain text file.
%I A352036 #21 Oct 11 2023 03:54:51
%S A352036 0,1,1,1,1,6562,1,1,6562,390626,1,6562,1,5764802,397187,1,1,43053283,
%T A352036 1,390626,5771363,214358882,1,6562,390626,815730722,43053283,5764802,
%U A352036 1,2563287812,1,1,214365443,6975757442,6155427,43053283,1,16983563042,815737283,390626,1
%N A352036 Sum of the 8th powers of the odd proper divisors of n.
%H A352036 Seiichi Manyama, <a href="/A352036/b352036.txt">Table of n, a(n) for n = 1..10000</a>
%H A352036 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352036 a(n) = Sum_{d|n, d<n, d odd} d^8.
%F A352036 G.f.: Sum_{k>=1} (2*k-1)^8 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352036 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A352036 a(n) = A321812(n) - n^8*A000035(n).
%F A352036 Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)-1)/18 = 0.0001115773... . (End)
%e A352036 a(10) = 390626; a(10) = Sum_{d|10, d<10, d odd} d^8 = 1^8 + 5^8 = 390626.
%t A352036 Table[Total[Select[Most[Divisors[n]],OddQ]^8],{n,45}] (* _Harvey P. Dale_, Aug 07 2022 *)
%t A352036 f[2, e_] := 1; f[p_, e_] := (p^(8*e+8) - 1)/(p^8 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^8, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%Y A352036 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), this sequence (k=8), A352037 (k=9), A352038 (k=10).
%Y A352036 Cf. A000035, A013667, A321812.
%K A352036 nonn,easy
%O A352036 1,6
%A A352036 _Wesley Ivan Hurt_, Mar 01 2022