This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352036 #21 Oct 11 2023 03:54:51 %S A352036 0,1,1,1,1,6562,1,1,6562,390626,1,6562,1,5764802,397187,1,1,43053283, %T A352036 1,390626,5771363,214358882,1,6562,390626,815730722,43053283,5764802, %U A352036 1,2563287812,1,1,214365443,6975757442,6155427,43053283,1,16983563042,815737283,390626,1 %N A352036 Sum of the 8th powers of the odd proper divisors of n. %H A352036 Seiichi Manyama, <a href="/A352036/b352036.txt">Table of n, a(n) for n = 1..10000</a> %H A352036 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>. %F A352036 a(n) = Sum_{d|n, d<n, d odd} d^8. %F A352036 G.f.: Sum_{k>=1} (2*k-1)^8 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022 %F A352036 From _Amiram Eldar_, Oct 11 2023: (Start) %F A352036 a(n) = A321812(n) - n^8*A000035(n). %F A352036 Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)-1)/18 = 0.0001115773... . (End) %e A352036 a(10) = 390626; a(10) = Sum_{d|10, d<10, d odd} d^8 = 1^8 + 5^8 = 390626. %t A352036 Table[Total[Select[Most[Divisors[n]],OddQ]^8],{n,45}] (* _Harvey P. Dale_, Aug 07 2022 *) %t A352036 f[2, e_] := 1; f[p_, e_] := (p^(8*e+8) - 1)/(p^8 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^8, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *) %Y A352036 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), this sequence (k=8), A352037 (k=9), A352038 (k=10). %Y A352036 Cf. A000035, A013667, A321812. %K A352036 nonn,easy %O A352036 1,6 %A A352036 _Wesley Ivan Hurt_, Mar 01 2022