cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352037 Sum of the 9th powers of the odd proper divisors of n.

This page as a plain text file.
%I A352037 #19 Oct 11 2023 03:54:47
%S A352037 0,1,1,1,1,19684,1,1,19684,1953126,1,19684,1,40353608,1972809,1,1,
%T A352037 387440173,1,1953126,40373291,2357947692,1,19684,1953126,10604499374,
%U A352037 387440173,40353608,1,38445332184,1,1,2357967375,118587876498,42306733,387440173,1,322687697780
%N A352037 Sum of the 9th powers of the odd proper divisors of n.
%H A352037 Seiichi Manyama, <a href="/A352037/b352037.txt">Table of n, a(n) for n = 1..10000</a>
%H A352037 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352037 a(n) = Sum_{d|n, d<n, d odd} d^9.
%F A352037 G.f.: Sum_{k>=1} (2*k-1)^9 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352037 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A352037 a(n) = A321813(n) - n^9*A000035(n).
%F A352037 Sum_{k=1..n} a(k) ~ c * n^10, where c = (zeta(10)-1)/20 = 0.0000497287... . (End)
%e A352037 a(10) = 1953126; a(10) = Sum_{d|10, d<10, d odd} d^9 = 1^9 + 5^9 = 1953126.
%t A352037 f[2, e_] := 1; f[p_, e_] := (p^(9*e+9) - 1)/(p^9 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^9, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%Y A352037 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), this sequence (k=9), A352038 (k=10).
%Y A352037 Cf. A000035, A013668, A321813.
%K A352037 nonn,easy
%O A352037 1,6
%A A352037 _Wesley Ivan Hurt_, Mar 01 2022