cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352038 Sum of the 10th powers of the odd proper divisors of n.

This page as a plain text file.
%I A352038 #23 Oct 11 2023 03:54:43
%S A352038 0,1,1,1,1,59050,1,1,59050,9765626,1,59050,1,282475250,9824675,1,1,
%T A352038 3486843451,1,9765626,282534299,25937424602,1,59050,9765626,
%U A352038 137858491850,3486843451,282475250,1,576660215300,1,1,25937483651,2015993900450,292240875,3486843451
%N A352038 Sum of the 10th powers of the odd proper divisors of n.
%H A352038 Seiichi Manyama, <a href="/A352038/b352038.txt">Table of n, a(n) for n = 1..10000</a>
%H A352038 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352038 a(n) = Sum_{d|n, d<n, d odd} d^10.
%F A352038 G.f.: Sum_{k>=1} (2*k-1)^10 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352038 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A352038 a(n) = A321814(n) - n^10*A000035(n).
%F A352038 Sum_{k=1..n} a(k) ~ c * n^11, where c = (zeta(11)-1)/22 = 0.0000224631... . (End)
%e A352038 a(10) = 9765626; a(10) = Sum_{d|10, d<10, d odd} d^10 = 1^10 + 5^10 = 9765626.
%t A352038 f[2, e_] := 1; f[p_, e_] := (p^(10*e+10) - 1)/(p^10 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^10, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%o A352038 (Python)
%o A352038 from math import prod
%o A352038 from sympy import factorint
%o A352038 def A352038(n): return prod((p**(10*(e+1))-1)//(p**10-1) for p, e in factorint(n).items() if p > 2) - (n**10 if n % 2 else 0) # _Chai Wah Wu_, Mar 01 2022
%Y A352038 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), this sequence (k=10).
%Y A352038 Cf. A000035, A013669, A321814.
%K A352038 nonn,easy
%O A352038 1,6
%A A352038 _Wesley Ivan Hurt_, Mar 01 2022