cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352047 Sum of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352047 #33 Oct 13 2023 06:52:53
%S A352047 0,2,3,4,5,8,7,8,12,12,11,16,13,16,23,16,17,26,19,24,31,24,23,32,30,
%T A352047 28,39,32,29,48,31,32,47,36,47,52,37,40,55,48,41,64,43,48,77,48,47,64,
%U A352047 56,62,71,56,53,80,71,64,79,60,59,96,61,64,103,64,83,96,67,72,95,96,71,104
%N A352047 Sum of the divisor complements of the odd proper divisors of n.
%H A352047 Michael De Vlieger, <a href="/A352047/b352047.txt">Table of n, a(n) for n = 1..10000</a>
%F A352047 a(n) = n * Sum_{d|n, d<n, d odd} 1 / d.
%F A352047 a(2n+1) = A000593(2n+1) - 1. - _Chai Wah Wu_, Mar 01 2022
%F A352047 G.f.: Sum_{k>=2} k * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 14 2023
%F A352047 exp( 2*Sum_{n>=1} a(n)*x^n/n ) is the g.f. of A300415. - _Paul D. Hanna_, May 15 2023
%F A352047 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352047 a(n) = A000593(n) * A006519(n) - A000035(n).
%F A352047 Sum_{k=1..n} a(k) = c * n^2 / 2, where c = Pi^2/8 = 1.23370055... (A111003). (End)
%e A352047 a(10) = 12; a(10) = 10 * Sum_{d|10, d<10, d odd} 1 / d = 10 * (1/1 + 1/5) = 12.
%p A352047 A352047 := proc(n)
%p A352047     local a,d ;
%p A352047     a := 0 ;
%p A352047     for d in numtheory[divisors](n) do
%p A352047         if type(d,'odd') and d < n then
%p A352047             a := a+n/d ;
%p A352047         end if;
%p A352047     end do:
%p A352047     a ;
%p A352047 end proc:
%p A352047 seq(A352047(n),n=1..30) ; # _R. J. Mathar_, Mar 09 2022
%t A352047 Table[n DivisorSum[n, 1/# &, # < n && OddQ[#] &], {n, 72}] (* _Michael De Vlieger_, Mar 02 2022 *)
%t A352047 a[n_] := DivisorSigma[-1, n / 2^IntegerExponent[n, 2]] * n - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352047 (PARI) a(n) = n*sumdiv(n, d, if ((d%2) && (d<n), 1/d)); \\ _Michel Marcus_, Mar 02 2022
%o A352047 (PARI) a(n) = n * sigma(n >> valuation(n, 2), -1) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%o A352047 (Python)
%o A352047 from math import prod
%o A352047 from sympy import factorint
%o A352047 def A352047(n): return prod(p**e if p == 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) - n % 2 # _Chai Wah Wu_, Mar 02 2022
%Y A352047 Cf. A000035, A000593, A002131, A006519, A111003, A300415.
%Y A352047 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), this sequence (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
%K A352047 nonn,easy
%O A352047 1,2
%A A352047 _Wesley Ivan Hurt_, Mar 01 2022