cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352048 Sum of the squares of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352048 #33 Dec 25 2024 04:06:32
%S A352048 0,4,9,16,25,40,49,64,90,104,121,160,169,200,259,256,289,364,361,416,
%T A352048 499,488,529,640,650,680,819,800,841,1040,961,1024,1219,1160,1299,
%U A352048 1456,1369,1448,1699,1664,1681,2000,1849,1952,2365,2120,2209,2560,2450,2604,2899,2720
%N A352048 Sum of the squares of the divisor complements of the odd proper divisors of n.
%H A352048 Robert Israel, <a href="/A352048/b352048.txt">Table of n, a(n) for n = 1..10000</a>
%F A352048 a(n) = n^2 * Sum_{d|n, d<n, d odd} 1 / d^2.
%F A352048 G.f.: Sum_{k>=2} k^2 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 14 2023
%F A352048 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352048 a(n) = A050999(n) * A006519(n)^2 - A000035(n).
%F A352048 Sum_{k=1..n} a(k) = c * n^3 / 3, where c = 7*zeta(3)/8 = 1.0517997... (A233091). (End)
%e A352048 a(10) = 10^2 * Sum_{d|10, d<10, d odd} 1 / d^2 = 10^2 * (1/1^2 + 1/5^2) = 104.
%p A352048 f:= proc(n) local m,d;
%p A352048       m:= n/2^padic:-ordp(n,2);
%p A352048       add((n/d)^2, d = select(`<`,numtheory:-divisors(m),n))
%p A352048 end proc:
%p A352048 map(f, [$1..60]); # _Robert Israel_, Apr 03 2023
%t A352048 a[n_] := n^2 DivisorSum[n, If[# < n && OddQ[#], 1/#^2, 0]&];
%t A352048 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, May 11 2023 *)
%t A352048 a[n_] := DivisorSigma[-2, n/2^IntegerExponent[n, 2]] * n^2 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352048 (PARI) a(n) = n^2*sumdiv(n, d, if ((d<n) && (d%2), 1/d^2)); \\ _Michel Marcus_, May 11 2023
%o A352048 (PARI) a(n) = n^2 * sigma(n >> valuation(n, 2), -2) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352048 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), this sequence (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
%Y A352048 Cf. A006519, A050999, A076577, A233091.
%K A352048 nonn,easy
%O A352048 1,2
%A A352048 _Wesley Ivan Hurt_, Mar 01 2022