cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352049 Sum of the cubes of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352049 #23 Oct 13 2023 06:52:26
%S A352049 0,8,27,64,125,224,343,512,756,1008,1331,1792,2197,2752,3527,4096,
%T A352049 4913,6056,6859,8064,9631,10656,12167,14336,15750,17584,20439,22016,
%U A352049 24389,28224,29791,32768,37295,39312,43343,48448,50653,54880,61543,64512,68921,77056,79507
%N A352049 Sum of the cubes of the divisor complements of the odd proper divisors of n.
%H A352049 Robert Israel, <a href="/A352049/b352049.txt">Table of n, a(n) for n = 1..10000</a>
%F A352049 a(n) = n^3 * Sum_{d|n, d<n, d odd} 1 / d^3.
%F A352049 G.f.: Sum_{k>=2} k^3 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 14 2023
%F A352049 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352049 a(n) = A051000(n) * A006519(n)^3 - A000035(n).
%F A352049 Sum_{k=1..n} a(k) = c * n^4 / 4, where c = 15*zeta(4)/16 = 1.01467803... (A300707). (End)
%e A352049 a(10) = 10^3 * Sum_{d|10, d<10, d odd} 1 / d^3 = 10^3 * (1/1^3 + 1/5^3) = 1008.
%p A352049 f:= proc(n) local m,d;
%p A352049       m:= n/2^padic:-ordp(n,2);
%p A352049       add((n/d)^3, d = select(`<`,numtheory:-divisors(m),n))
%p A352049 end proc:
%p A352049 map(f, [$1..50]); # _Robert Israel_, Apr 03 2023
%t A352049 A352049[n_]:=DivisorSum[n,1/#^3&,#<n&&OddQ[#]&]n^3;Array[A352049,50] (* _Paolo Xausa_, Aug 09 2023 *)
%t A352049 a[n_] := DivisorSigma[-3, n/2^IntegerExponent[n, 2]] * n^3 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352049 (PARI) a(n) = n^3 * sigma(n >> valuation(n, 2), -3) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352049 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), this sequence (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
%Y A352049 Cf. A006519, A051000, A300707.
%K A352049 nonn,easy
%O A352049 1,2
%A A352049 _Wesley Ivan Hurt_, Mar 01 2022