cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352050 Sum of the 4th powers of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352050 #24 Oct 13 2023 06:52:31
%S A352050 0,16,81,256,625,1312,2401,4096,6642,10016,14641,20992,28561,38432,
%T A352050 51331,65536,83521,106288,130321,160256,196963,234272,279841,335872,
%U A352050 391250,456992,538083,614912,707281,821312,923521,1048576,1200643,1336352,1503651,1700608,1874161
%N A352050 Sum of the 4th powers of the divisor complements of the odd proper divisors of n.
%H A352050 Robert Israel, <a href="/A352050/b352050.txt">Table of n, a(n) for n = 1..10000</a>
%F A352050 a(n) = n^4 * Sum_{d|n, d<n, d odd} 1 / d^4.
%F A352050 G.f.: Sum_{k>=2} k^4 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 14 2023
%F A352050 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352050 a(n) = A051001(n) * A006519(n)^4 - A000035(n).
%F A352050 Sum_{k=1..n} a(k) = c * n^5 / 5, where c = 31*zeta(5)/32 = 1.00452376... . (End)
%e A352050 a(10) = 10^4 * Sum_{d|10, d<10, d odd} 1 / d^4 = 10^4 * (1/1^4 + 1/5^4) = 10016.
%p A352050 f:= proc(n) local m,d;
%p A352050       m:= n/2^padic:-ordp(n,2);
%p A352050       add((n/d)^4, d = select(`<`,numtheory:-divisors(m),n))
%p A352050 end proc:map(f, [$1..40]); # _Robert Israel_, Apr 03 2023
%t A352050 A352050[n_]:=DivisorSum[n,1/#^4&,#<n&&OddQ[#]&]n^4;Array[A352050,50] (* _Paolo Xausa_, Aug 09 2023 *)
%t A352050 a[n_] := DivisorSigma[-4, n/2^IntegerExponent[n, 2]] * n^4 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352050 (PARI) a(n) = n^4 * sigma(n >> valuation(n, 2), -4) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352050 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), this sequence (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
%Y A352050 Cf. A000035, A006519, A013663, A051001.
%K A352050 nonn,easy
%O A352050 1,2
%A A352050 _Wesley Ivan Hurt_, Mar 01 2022