cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352051 Sum of the 5th powers of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352051 #20 Oct 13 2023 06:52:13
%S A352051 0,32,243,1024,3125,7808,16807,32768,59292,100032,161051,249856,
%T A352051 371293,537856,762743,1048576,1419857,1897376,2476099,3201024,4101151,
%U A352051 5153664,6436343,7995392,9768750,11881408,14408199,17211392,20511149,24407808,28629151,33554432,39296687
%N A352051 Sum of the 5th powers of the divisor complements of the odd proper divisors of n.
%H A352051 Robert Israel, <a href="/A352051/b352051.txt">Table of n, a(n) for n = 1..10000</a>
%F A352051 a(n) = n^5 * Sum_{d|n, d<n, d odd} 1 / d^5.
%F A352051 G.f.: Sum_{k>=2} k^5 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 18 2023
%F A352051 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352051 a(n) = A051002(n) * A006519(n)^5 - A000035(n).
%F A352051 Sum_{k=1..n} a(k) = c * n^6 / 6, where c = 63*zeta(6)/64 = 1.00144707... . (End)
%e A352051 a(10) = 10^5 * Sum_{d|10, d<10, d odd} 1 / d^5 = 10^5 * (1/1^5 + 1/5^5) = 100032.
%p A352051 f:= proc(n) local m,d;
%p A352051       m:= n/2^padic:-ordp(n,2);
%p A352051       add((n/d)^5, d = select(`<`,numtheory:-divisors(m),n))
%p A352051 end proc:
%p A352051 map(f, [$1..40]); # _Robert Israel_, Apr 03 2023
%t A352051 A352051[n_]:=DivisorSum[n,1/#^5&,#<n&&OddQ[#]&]n^5;Array[A352051,50] (* _Paolo Xausa_, Aug 09 2023 *)
%t A352051 a[n_] := DivisorSigma[-5, n/2^IntegerExponent[n, 2]] * n^5 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352051 (PARI) a(n) = n^5 * sigma(n >> valuation(n, 2), -5) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352051 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), this sequence (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
%Y A352051 Cf. A000035, A006519, A013664, A051002.
%K A352051 nonn,easy
%O A352051 1,2
%A A352051 _Wesley Ivan Hurt_, Mar 01 2022