cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352052 Sum of the 6th powers of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352052 #21 Oct 13 2023 06:52:19
%S A352052 0,64,729,4096,15625,46720,117649,262144,532170,1000064,1771561,
%T A352052 2990080,4826809,7529600,11406979,16777216,24137569,34058944,47045881,
%U A352052 64004096,85884499,113379968,148035889,191365120,244156250,308915840,387952659,481894400,594823321
%N A352052 Sum of the 6th powers of the divisor complements of the odd proper divisors of n.
%H A352052 Robert Israel, <a href="/A352052/b352052.txt">Table of n, a(n) for n = 1..10000</a>
%F A352052 a(n) = n^6 * Sum_{d|n, d<n, d odd} 1 / d^6.
%F A352052 G.f.: Sum_{k>=2} k^6 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 18 2023
%F A352052 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352052 a(n) = A321810(n) * A006519(n)^6 - A000035(n).
%F A352052 Sum_{k=1..n} a(k) = c * n^7 / 7, where c = 127*zeta(7)/128 = 1.000471548... . (End)
%e A352052 a(10) = 10^6 * Sum_{d|10, d<10, d odd} 1 / d^6 = 10^6 * (1/1^6 + 1/5^6) = 1000064.
%p A352052 f:= proc(n) local m,d;
%p A352052       m:= n/2^padic:-ordp(n,2);
%p A352052       add((n/d)^6, d = select(`<`,numtheory:-divisors(m),n))
%p A352052 end proc:
%p A352052 map(f, [$1..30]); # _Robert Israel_, Apr 03 2023
%t A352052 Table[n^6*DivisorSum[n, 1/#^6 &, And[# < n, OddQ[#]] &], {n, 29}] (* _Michael De Vlieger_, Apr 04 2023 *)
%t A352052 a[n_] := DivisorSigma[-6, n/2^IntegerExponent[n, 2]] * n^6 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352052 (PARI) a(n) = n^6*sumdiv(n, d, if ((d<n) && (d%2), 1/d^6)); \\ _Michel Marcus_, Apr 04 2023
%o A352052 (PARI) a(n) = n^6 * sigma(n >> valuation(n, 2), -6) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352052 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), this sequence (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
%Y A352052 Cf. A000035, A006519, A013665, A321810.
%K A352052 nonn,easy
%O A352052 1,2
%A A352052 _Wesley Ivan Hurt_, Mar 01 2022