cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352054 Sum of the 8th powers of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352054 #17 Oct 13 2023 06:52:01
%S A352054 0,256,6561,65536,390625,1679872,5764801,16777216,43053282,100000256,
%T A352054 214358881,430047232,815730721,1475789312,2563287811,4294967296,
%U A352054 6975757441,11021640448,16983563041,25600065536,37828630723,54875873792,78310985281,110092091392,152588281250
%N A352054 Sum of the 8th powers of the divisor complements of the odd proper divisors of n.
%H A352054 Paolo Xausa, <a href="/A352054/b352054.txt">Table of n, a(n) for n = 1..10000</a>
%F A352054 a(n) = n^8 * Sum_{d|n, d<n, d odd} 1 / d^8.
%F A352054 G.f.: Sum_{k>=2} k^8 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 19 2023
%F A352054 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352054 a(n) = A321812(n) * A006519(n)^8 - A000035(n).
%F A352054 Sum_{k=1..n} a(k) = c * n^9 / 9, where c = 511*zeta(9)/512 = 1.0000513451... . (End)
%e A352054 a(10) = 10^8 * Sum_{d|10, d<10, d odd} 1 / d^8 = 10^8 * (1/1^8 + 1/5^8) = 100000256.
%t A352054 A352054[n_]:=DivisorSum[n,1/#^8&,#<n&&OddQ[#]&]n^8;Array[A352054,50] (* _Paolo Xausa_, Aug 09 2023 *)
%t A352054 a[n_] := DivisorSigma[-8, n/2^IntegerExponent[n, 2]] * n^8 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352054 (PARI) a(n) = n^8 * sigma(n >> valuation(n, 2), -8) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352054 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), this sequence (k=8), A352055 (k=9), A352056 (k=10).
%Y A352054 Cf. A000035, A006519, A013667, A321812.
%K A352054 nonn,easy
%O A352054 1,2
%A A352054 _Wesley Ivan Hurt_, Mar 01 2022