cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352055 Sum of the 9th powers of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352055 #18 Oct 13 2023 06:51:56
%S A352055 0,512,19683,262144,1953125,10078208,40353607,134217728,387440172,
%T A352055 1000000512,2357947691,5160042496,10604499373,20661047296,38445332183,
%U A352055 68719476736,118587876497,198369368576,322687697779,512000262144,794320419871,1207269218304,1801152661463,2641941757952
%N A352055 Sum of the 9th powers of the divisor complements of the odd proper divisors of n.
%H A352055 Paolo Xausa, <a href="/A352055/b352055.txt">Table of n, a(n) for n = 1..10000</a>
%F A352055 a(n) = n^9 * Sum_{d|n, d<n, d odd} 1 / d^9.
%F A352055 G.f.: Sum_{k>=2} k^9 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 19 2023
%F A352055 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352055 a(n) = A321813(n) * A006519(n)^9 - A000035(n).
%F A352055 Sum_{k=1..n} a(k) = c * n^10 / 10, where c = 1023*zeta(10)/1024 = 1.0000170413... . (End)
%e A352055 a(10) = 10^9 * Sum_{d|10, d<10, d odd} 1 / d^9 = 10^9 * (1/1^9 + 1/5^9) = 1000000512.
%t A352055 A352055[n_]:=DivisorSum[n,1/#^9&,#<n&&OddQ[#]&]n^9;Array[A352055,50] (* _Paolo Xausa_, Aug 10 2023 *)
%t A352055 a[n_] := DivisorSigma[-9, n/2^IntegerExponent[n, 2]] * n^9 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352055 (PARI) a(n) = n^9 * sigma(n >> valuation(n, 2), -9) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352055 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), this sequence (k=9), A352056 (k=10).
%Y A352055 Cf. A000035, A006519, A013668, A321813.
%K A352055 nonn,easy
%O A352055 1,2
%A A352055 _Wesley Ivan Hurt_, Mar 01 2022