cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352056 Sum of the 10th powers of the divisor complements of the odd proper divisors of n.

This page as a plain text file.
%I A352056 #18 Oct 13 2023 06:51:47
%S A352056 0,1024,59049,1048576,9765625,60467200,282475249,1073741824,
%T A352056 3486843450,10000001024,25937424601,61918412800,137858491849,
%U A352056 289254656000,576660215299,1099511627776,2015993900449,3570527693824,6131066257801,10240001048576,16680163512499
%N A352056 Sum of the 10th powers of the divisor complements of the odd proper divisors of n.
%H A352056 Paolo Xausa, <a href="/A352056/b352056.txt">Table of n, a(n) for n = 1..10000</a>
%F A352056 a(n) = n^10 * Sum_{d|n, d<n, d odd} 1 / d^10.
%F A352056 G.f.: Sum_{k>=2} k^10 * x^k / (1 - x^(2*k)). - _Ilya Gutkovskiy_, May 19 2023
%F A352056 From _Amiram Eldar_, Oct 13 2023: (Start)
%F A352056 a(n) = A321814(n) * A006519(n)^10 - A000035(n).
%F A352056 Sum_{k=1..n} a(k) = c * n^11 / 11, where c = 2047*zeta(11)/2048 = 1.00000566605... . (End)
%e A352056 a(10) = 10^10 * Sum_{d|10, d<10, d odd} 1 / d^10 = 10^10 * (1/1^10 + 1/5^10) = 10000001024.
%t A352056 A352056[n_]:=DivisorSum[n,1/#^10&,#<n&&OddQ[#]&]n^10;Array[A352056,50] (* _Paolo Xausa_, Aug 10 2023 *)
%t A352056 a[n_] := DivisorSigma[-10, n/2^IntegerExponent[n, 2]] * n^10 - Mod[n, 2]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2023 *)
%o A352056 (PARI) a(n) = n^10 * sigma(n >> valuation(n, 2), -10) - n % 2; \\ _Amiram Eldar_, Oct 13 2023
%Y A352056 Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), this sequence (k=10).
%Y A352056 Cf. A000035, A006519, A013669, A321814.
%K A352056 nonn,easy
%O A352056 1,2
%A A352056 _Wesley Ivan Hurt_, Mar 01 2022