This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352057 #45 Apr 09 2022 06:36:48 %S A352057 0,1,3,6,10,55,66,300,666,990,3003,5050,10011,66066,500500,600060, %T A352057 50005000,5000050000,500000500000,50000005000000,5000000050000000, %U A352057 500000000500000000,50000000005000000000,5000000000050000000000,500000000000500000000000,50000000000005000000000000 %N A352057 Triangular numbers whose nonzero digits are all the same. %C A352057 This sequence may correspond to "monochromatic step squads" in the British animation "Numberblocks". %C A352057 Conjecture: the largest term in this sequence whose nonzero digits are not 5 is 600060. %t A352057 (* Method1 *) %t A352057 NonZeroQ[n_Integer] := n != 0; Select[ %t A352057 Table[n (n + 1)/2, {n, 0, 1000000}], %t A352057 Length[Tally[Select[IntegerDigits[#], NonZeroQ]]] == 1 &] %t A352057 (* Method2 *) %t A352057 Sort[Select[ %t A352057 Flatten[Outer[Times, %t A352057 Table[FromDigits[IntegerDigits[n, 2]], {n, 2^16 - 1}], Range[9]]], %t A352057 IntegerQ[Sqrt[8 # + 1]] &]] %o A352057 (Python) %o A352057 from sympy import integer_nthroot %o A352057 from sympy.utilities.iterables import multiset_permutations %o A352057 def istri(n): return integer_nthroot(8*n+1, 2)[1] %o A352057 def zplus1(digits): %o A352057 if digits == 1: yield 0 %o A352057 for d1 in "123456789": %o A352057 digset = "0"*(digits-1) + d1*(digits-1) %o A352057 for mp in multiset_permutations(digset, digits-1): %o A352057 t = int(d1 + "".join(mp)) %o A352057 yield t %o A352057 def afind(maxdigits): %o A352057 for digits in range(1, maxdigits+1): %o A352057 for t in zplus1(digits): %o A352057 if istri(t): %o A352057 print(t, end=", ") %o A352057 afind(22) # _Michael S. Branicky_, Mar 02 2022 %o A352057 (PARI) isok(k) = my(d=digits(k*(k+1)/2)); d = select(x->(x!=0), d); #Set(d)<=1; %o A352057 lista(nn) = {for (n=0, nn, if (isok(n), print1(n*(n+1)/2, ", ")););} \\ _Michel Marcus_, Mar 02 2022 %Y A352057 Supersequence of A037156. %Y A352057 Cf. A000217, A118668, A125289, A343811. %Y A352057 Cf. A352148 (indices of these triangular numbers). %K A352057 nonn,base %O A352057 1,3 %A A352057 _Steven Lu_, Mar 02 2022 %E A352057 a(24)-a(25) from _Michael S. Branicky_, Mar 02 2022