This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352064 #14 Mar 04 2022 11:20:16 %S A352064 1,2,3,4,6,8,5,9,12,16,10,18,24,32,7,15,20,27,36,48,64,14,30,40,54,72, %T A352064 96,128,21,25,28,45,60,80,81,108,144,192,256,42,50,56,90,120,160,162, %U A352064 216,288,384,512,11,35,63,75,84,100,112,135,180,240,243,320,324,432,576,768,1024 %N A352064 Irregular triangle T(n,k) where row n lists the positions of n in A275314. %C A352064 A table by Leonhard Euler. %C A352064 Let L(n-1) be a partition of (n-1) whose parts m are restricted to predecessors of primes. Row n lists the products (m+1) for all such partitions L(n-1). %C A352064 Greatest term in row n is 2^(n-1). %C A352064 Least term in row p prime is p. %H A352064 Michael De Vlieger, <a href="/A352064/b352064.txt">Table of n, a(n) for n = 1..10673</a> (rows n = 1..40, flattened) %H A352064 Leonhard Euler, <a href="https://archive.org/stream/tentamennovaethe00eule#page/40/mode/2up">Tentamen novae theoriae mvsicae ex certissimis harmoniae principiis dilvcide expositae</a>, Petropoli, ex typographia Academiae scientiarvm (1739), 41. %F A352064 A280954(n) = length of row n. %e A352064 Triangle begins: %e A352064 1; %e A352064 2; %e A352064 3, 4; %e A352064 6, 8; %e A352064 5, 9, 12, 16; %e A352064 10, 18, 24, 32; %e A352064 7, 15, 20, 27, 36, 48, 64; %e A352064 14, 30, 40, 54, 72, 96, 128; %e A352064 21, 25, 28, 45, 60, 80, 81, 108, 144, 192, 256; %e A352064 42, 50, 56, 90, 120, 160, 162, 216, 288, 384, 512; %e A352064 ... %e A352064 Illustration of relationship of terms of row n and partitions of (n-1) such that all parts m are restricted to prime predecessors. We show the partitions in parentheses, adding 1 to each part m below in brackets to take the product. The products are terms in row n in this sequence. %e A352064 1 = (1); %e A352064 [2] %e A352064 row 2: 2; %e A352064 . %e A352064 2 = (2), (1+1); %e A352064 [3] [2*2] %e A352064 row 3: 3, 4; %e A352064 . %e A352064 3 = (2+1), (1+1+1); %e A352064 [3*2] [2*2*2] %e A352064 row 4: 6, 8; %e A352064 . %e A352064 4 = (4), (2+2), (2+1+1), (1+1+1+1); %e A352064 [5] [3*3] [3*2*2] [2*2*2*2] %e A352064 row 5: 5, 9, 12, 16; %e A352064 . %e A352064 5 = (4+1), (2+2+1), (2+1+1+1), (1+1+1+1+1); %e A352064 [5*2] [3*3*2] [3*2*2*2] [2*2*2*2*2] %e A352064 row 6: 10, 18, 24, 32; %e A352064 etc. %t A352064 With[{n = 12}, Take[#, n] &@ Values@ KeySort@ PositionIndex@ Array[Total[Flatten[ConstantArray[#1 - 1, #2] & @@@ FactorInteger[#]]] &, 2^n]] // TableForm (* syntactically simple, or, more efficiently *) %t A352064 f[m_] := Block[{s = {Prime@ PrimePi[m + 1] - 1}}, KeySort@ Merge[#, Identity] &@ Join[{1 -> {}}, Reap[Do[If[# <= m, Sow[# -> s]; AppendTo[s, Last@ s], If[Last@ s == 1, s = DeleteCases[s, 1]; If[Length@ s == 0, Break[], s = MapAt[Prime[PrimePi[# + 1] - 1] - 1 &, s, -1]], s = MapAt[Prime[PrimePi[# + 1] - 1] - 1 &, s, -1]]] &@ Total[s], {i, Infinity}]][[-1, -1]] ]]; Map[Union[Times @@ # & /@ #] &, Values@ f[40] + 1] // Flatten %Y A352064 Cf. A001414, A006093, A275314, A280954. %K A352064 nonn,tabf %O A352064 1,2 %A A352064 _Michael De Vlieger_, Mar 02 2022