This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352065 #72 Jan 14 2023 12:16:17 %S A352065 2,29,293,229,3119,67,18121,59629,10247,15391,5903,24007,11783,39359, %T A352065 21013,104917,38273,61129,23663,2423 %N A352065 a(n) is the least prime p that starts a run of 2n+1 consecutive primes whose product is a sum of the same number of (others or same) consecutive primes. %H A352065 Jean-Marc Rebert, <a href="/A352065/a352065_2.txt">doubleDecomposition</a> %H A352065 Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_1077.htm">Puzzle 1077. These numbers that are...</a>, The Prime Puzzles and Problems Connection. %e A352065 a(0) = 2, because 2 = 2, and there is no smaller prime. %e A352065 a(1) = 29, because 29 * 31 * 37 = 33263 = 11083 + 11087 + 11093, and there is no smaller prime that starts a run of 3 consecutive primes whose product is a sum of 3 consecutive primes. %e A352065 a(2) = 293, because 293 * 307 * 311 * 313 * 317 = 2775683761181 = 555136752211 + 555136752221 + 555136752227 + 555136752251 + 555136752271, and there is no smaller prime that starts a run of 5 consecutive primes whose product is a sum of 5 consecutive primes. %e A352065 Let y be the product of the 2n+1 consecutive primes starting with a(n) and let q be the first prime in the sum of 2n+1 consecutive primes. For n = 0..3 we have: %e A352065 . %e A352065 n 2n+1 a(n) y #dgts(y) q #dgts(q) %e A352065 - ---- ---- ----------------- -------- ---------------- -------- %e A352065 0 1 2 2 1 2 1 %e A352065 1 3 29 33263 5 11083 5 %e A352065 2 5 293 2775683761181 13 555136752211 12 %e A352065 3 7 229 52139749485151463 17 7448535640735789 16 %e A352065 . %e A352065 For more examples, see the "doubleDecomposition" link. %o A352065 (Python) %o A352065 from math import prod %o A352065 from sympy import prime, nextprime, prevprime %o A352065 def A352065(n): %o A352065 plist = [prime(k) for k in range(1,2*n+2)] %o A352065 pd = prod(plist) %o A352065 while True: %o A352065 mlist = [nextprime(pd//(2*n+1)-1)] %o A352065 for _ in range(n): %o A352065 mlist = [prevprime(mlist[0])]+mlist+[nextprime(mlist[-1])] %o A352065 if sum(mlist) <= pd: %o A352065 while (s := sum(mlist)) <= pd: %o A352065 if s == pd: %o A352065 return plist[0] %o A352065 mlist = mlist[1:]+[nextprime(mlist[-1])] %o A352065 else: %o A352065 while (s := sum(mlist)) >= pd: %o A352065 if s == pd: %o A352065 return plist[0] %o A352065 mlist = [prevprime(mlist[0])]+mlist[:-1] %o A352065 pd //= plist[0] %o A352065 plist = plist[1:] + [nextprime(plist[-1])] %o A352065 pd *= plist[-1] # _Chai Wah Wu_, Apr 21 2022 %Y A352065 Cf. A203619, A323052. %K A352065 nonn,hard,more %O A352065 0,1 %A A352065 _Jean-Marc Rebert_, Mar 05 2022 %E A352065 a(15)-a(19) from _Chai Wah Wu_, Apr 21 2022