This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352066 #9 May 30 2022 09:54:36 %S A352066 1,1,1,1,1,2,6,16,36,72,136,256,496,992,2016,4096,8256,16512,32896, %T A352066 65536,130816,261633,523797,1048807,2099947,4206983,8443911,17009071, %U A352066 34452991,70311167,144818751,301455871,634774911,1352698367,2917079551,6362776831,14025038591 %N A352066 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1,4*k) * a(k). %H A352066 Seiichi Manyama, <a href="/A352066/b352066.txt">Table of n, a(n) for n = 0..1000</a> %F A352066 G.f. A(x) satisfies: A(x) = 1 + x * A(x^4/(1 - x)^4) / (1 - x). %F A352066 E.g.f.: Integral exp(x) * Sum_{n>=0} a(n) * x^(4*n) / (4*n)! dx. %t A352066 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, 4 k] a[k], {k, 0, Floor[(n - 1)/4]}]; Table[a[n], {n, 0, 36}] %t A352066 nmax = 36; A[_] = 0; Do[A[x_] = 1 + x A[x^4/(1 - x)^4]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] %Y A352066 Cf. A351971, A352044, A352045. %K A352066 nonn %O A352066 0,6 %A A352066 _Ilya Gutkovskiy_, Mar 02 2022