This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352069 #10 Mar 03 2022 04:31:59 %S A352069 1,1,5,42,492,7374,134478,2887128,71281656,1988802720,61860849552, %T A352069 2121993490176,79566300371952,3237181141173264,142019158472311248, %U A352069 6682603650677875584,335698708873243355136,17930674324049810882688,1014685181110897126616448,60641642160287342580586752 %N A352069 Expansion of e.g.f. 1 / (1 + log(1 - 3*x) / 3). %F A352069 a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-3)^(n-k). %F A352069 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * 3^(k-1) * a(n-k). %F A352069 a(n) ~ n! * 3^(n+1) * exp(3*n) / (exp(3) - 1)^(n+1). - _Vaclav Kotesovec_, Mar 03 2022 %t A352069 nmax = 19; CoefficientList[Series[1/(1 + Log[1 - 3 x]/3), {x, 0, nmax}], x] Range[0, nmax]! %t A352069 Table[Sum[StirlingS1[n, k] k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}] %o A352069 (PARI) my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-3*x)/3))) \\ _Michel Marcus_, Mar 02 2022 %Y A352069 Cf. A007840, A032031, A087674, A227917, A255927, A352071. %K A352069 nonn %O A352069 0,3 %A A352069 _Ilya Gutkovskiy_, Mar 02 2022