cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352074 a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-n)^(n-k).

This page as a plain text file.
%I A352074 #17 Jun 07 2022 10:55:43
%S A352074 1,1,4,42,904,34070,2019888,174588120,20804747136,3276218158560,
%T A352074 659664288364800,165425062846302336,50574549124825998336,
%U A352074 18520126461205806360144,8003819275469728355033088,4031020344281171589447408000,2340375822778055527109749211136
%N A352074 a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-n)^(n-k).
%H A352074 Seiichi Manyama, <a href="/A352074/b352074.txt">Table of n, a(n) for n = 0..233</a>
%F A352074 a(n) = n! * [x^n] 1 / (1 + log(1 - n*x) / n) for n > 0.
%F A352074 a(n) ~ n! * n^(n-2) * (1 + 2*log(n)/n). - _Vaclav Kotesovec_, Mar 03 2022
%t A352074 Unprotect[Power]; 0^0 = 1; Table[Sum[StirlingS1[n, k] k! (-n)^(n - k), {k, 0, n}], {n, 0, 16}]
%t A352074 Join[{1}, Table[n! SeriesCoefficient[1/(1 + Log[1 - n x]/n), {x, 0, n}], {n, 1, 16}]]
%o A352074 (PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*k!*(-n)^(n-k)); \\ _Michel Marcus_, Mar 02 2022
%Y A352074 Cf. A007840, A092985, A094420, A227917, A317171, A317172, A331690, A352069, A352071.
%Y A352074 Cf. A081048.
%K A352074 nonn
%O A352074 0,3
%A A352074 _Ilya Gutkovskiy_, Mar 02 2022