cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352080 a(n) is the number of times that the square root operation must be applied to n in order to reach an irrational number.

This page as a plain text file.
%I A352080 #32 Nov 16 2022 08:55:19
%S A352080 1,1,2,1,1,1,1,2,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,
%T A352080 2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,
%U A352080 1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1
%N A352080 a(n) is the number of times that the square root operation must be applied to n in order to reach an irrational number.
%C A352080 a(1) is undefined because 1^(1/2^k) = 1 for all k.
%C A352080 Column a(n)-1 has the first nonunit term in row n of A352780. - _Peter Munn_, Nov 15 2022
%F A352080 a(n) is the minimum k such that n^(1/2^k) is irrational.
%F A352080 a(n) = A007814(A052409(n)) + 1. - _Amiram Eldar_, Mar 03 2022
%F A352080 a(n) = A001511(A267116(n)). - _Peter Munn_, Nov 15 2022
%e A352080 a(2) = 1 because sqrt(2) is irrational.
%e A352080 a(16) = 3 because sqrt(16) = 16^(1/2) = 4, sqrt(sqrt(16)) = 16^(1/4) = 2, but sqrt(sqrt(sqrt(16))) = 16^(1/8) = sqrt(2), which is irrational.
%t A352080 a[n_] := IntegerExponent[GCD @@ FactorInteger[n][[;; , 2]], 2] + 1; Array[a, 100, 2] (* _Amiram Eldar_, Mar 03 2022 *)
%o A352080 (PARI) a(n) = if (!issquare(n, &n), 1, a(n)+1); \\ _Michel Marcus_, Mar 03 2022
%Y A352080 Cf. A000290 (squares), A010052.
%Y A352080 See the formula section for the relationships with A001511, A007814, A052409, A267116.
%Y A352080 Cf. also A000037 (indices of 1's), A030140 (indices of 2's).
%Y A352080 Cf. A352780.
%K A352080 nonn
%O A352080 2,3
%A A352080 _Ryan Jean_, Mar 02 2022