cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352090 Numbers k such that k and k+1 are both tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1, 6, 7, 12, 13, 20, 26, 27, 39, 68, 75, 80, 81, 87, 115, 128, 135, 149, 176, 184, 185, 195, 204, 215, 224, 230, 236, 243, 264, 278, 284, 291, 344, 364, 399, 447, 506, 507, 519, 548, 555, 560, 575, 595, 615, 635, 656, 664, 665, 684, 704, 725, 744, 777, 804, 824
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k and A278043(k+1) | k+1.
The odd tribonacci numbers, A000073(A042964(m)), are all terms.

Examples

			6 is a term since 6 and 7 are both tribonacci-Niven numbers: the minimal tribonacci representation of 6, A278038(6) = 110, has 2 1's and 6 is divisible by 2, and the minimal tribonacci representation of 7, A278038(7) = 1000, has one 1 and 7 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[1000], q[#] && q[# + 1] &]