This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352092 #8 Mar 05 2022 04:02:24 %S A352092 1602,218349,296469,1213749,1291869,1896630,1952070,2153709,2399550, %T A352092 3149109,3753870,3809310,3983229,4226208,4256790,4449288,4711482, %U A352092 5707897,5727708,6141750,6589230,6969429,7205757,7229208,7276143,7292943,7454710,7752588,7937109,8877069 %N A352092 Starts of runs of 4 consecutive tribonacci-Niven numbers (A352089). %C A352092 Conjecture: There are no runs of 5 consecutive tribonacci-Niven numbers (checked up to 10^10). %H A352092 Amiram Eldar, <a href="/A352092/b352092.txt">Table of n, a(n) for n = 1..10000</a> %e A352092 1602 is a term since 1602, 1603, 1604 and 1605 are all divisible by the number of terms in their minimal tribonacci representation: %e A352092 k A278038(k) A278043(k) k/A278043(k) %e A352092 -------------------------------------------- %e A352092 1602 110100011010 6 267 %e A352092 1603 110100011011 7 229 %e A352092 1604 110100100000 4 401 %e A352092 1605 110100100001 5 321 %t A352092 t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; triboNivenQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; seq[count_, nConsec_] := Module[{tri = triboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {triboNivenQ[k]}]; k++]; s]; seq[6, 4] %Y A352092 Cf. A278038, A278043. %Y A352092 Subsequence of A352089, A352090 and A352091. %Y A352092 Similar sequences: A141769, A328211, A328207, A328215, A330933, A331824, A334311, A342429, A344344. %K A352092 nonn,base %O A352092 1,1 %A A352092 _Amiram Eldar_, Mar 04 2022