This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352095 #15 Mar 11 2022 13:01:05 %S A352095 0,0,0,0,0,0,1,1,3,4,6,9,14,17,27,34,46,61,82,99,135,165,208,261,325, %T A352095 389,490,584,708,852,1023,1200,1445,1687,1984,2327,2717,3133,3663, %U A352095 4199,4838,5557,6360,7225,8267,9344,10587,11968,13489,15126,17037,19023 %N A352095 Dimension of the space of Siegel cusp forms of genus 3 and weight 2n. %C A352095 There are no nonzero Siegel cusp forms of genus 3 and odd weight. %C A352095 Sequence satisfies linear recurrence of order 54 for a(n) when n > 57. %H A352095 Andy Huchala, <a href="/A352095/b352095.txt">Table of n, a(n) for n = 0..20000</a> %H A352095 O. Taibi, <a href="https://arxiv.org/abs/1406.4247">Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula</a>, arXiv 1406.4247 [math.NT] (2014), 64-65. %H A352095 S. Tsuyumine, <a href="https://doi.org/10.2307/2374517">On Siegel modular forms of degree three</a>, Amer. J. Math., 108 (1986), 831-832. %H A352095 <a href="/index/Rec#order_54">Index entries for linear recurrences with constant coefficients</a> signature (1,0,0,0,0,2,-1,-1,1,0,-1,-1,-1,2,-1,-2,2,1,0,0,-1,3,0,-3,2,0,0,0,-2,3,0,-3,1,0,0,-1,-2,2,1,-2,1,1,1,0,-1,1,1,-2,0,0,0,0,-1,1) %F A352095 G.f.: p/q with p,q given in Sage program. %F A352095 a(n) = A027634(n) - A029143(n). %e A352095 The space of weight 18 Siegel cusp forms of genus 3 has dimension 4. %o A352095 (Sage) %o A352095 R.<x> = PowerSeriesRing(ZZ,100) %o A352095 p = -x^56 + x^55 - x^54 - x^51 - 3*x^48 + x^47 - 3*x^46 - 2*x^45 - 2*x^44 - 3*x^43 - 4*x^42 - 2*x^41 - 7*x^40 - 3*x^39 - 8*x^38 - 4*x^37 - 10*x^36 - 6*x^35 - 10*x^34 - 9*x^33 - 9*x^32 - 9*x^31 - 13*x^30 - 5*x^29 - 15*x^28 - 6*x^27 - 11*x^26 - 10*x^25 - 8*x^24 - 8*x^23 - 11*x^22 - 4*x^21 - 10*x^20 - 5*x^19 - 6*x^18 - 5*x^17 - 6*x^16 - 2*x^15 - 6*x^14 - 2*x^13 - 3*x^12 - 3*x^11 - 2*x^10 - x^9 - 2*x^8 - x^6; %o A352095 q = x^54 - x^53 - 2*x^48 + x^47 + x^46 - x^45 + x^43 + x^42 + x^41 - 2*x^40 + x^39 + 2*x^38 - 2*x^37 - x^36 + x^33 - 3*x^32 + 3*x^30 - 2*x^29 + 2*x^25 - 3*x^24 + 3*x^22 - x^21 + x^18 + 2*x^17 - 2*x^16 - x^15 + 2*x^14 - x^13 - x^12 - x^11 + x^9 - x^8 - x^7 + 2*x^6 + x - 1; %o A352095 (p/q).list()[:30] %Y A352095 Cf. A027634, A029143. %K A352095 nonn %O A352095 0,9 %A A352095 _Andy Huchala_, Mar 09 2022