This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352106 #11 Mar 07 2022 13:04:56 %S A352106 0,1,3,5,7,27,51,325,2193,3735,23709,35889,53835,589833,1294265, %T A352106 17291201,80719769,1274288105,23157444917,23635236877,230684552043, %U A352106 1218891196337,1722894010643,2544113575977,93096801594005,175482093541881,256924005422487,372295593308821 %N A352106 Numbers whose binary and maximal tribonacci representations are both palindromic. %e A352106 The first 5 terms are: %e A352106 n a(n) A007088(a(n)) A352103(a(n)) %e A352106 - ---- ------------- ------------- %e A352106 1 0 0 0 %e A352106 2 1 1 1 %e A352106 3 3 11 11 %e A352106 4 5 101 101 %e A352106 5 7 111 111 %e A352106 6 27 11011 11111 %e A352106 7 51 110011 111111 %e A352106 8 325 101000101 111111111 %e A352106 9 2193 100010010001 1001101011001 %e A352106 10 3735 111010010111 1111111111111 %t A352106 t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; lazyTribPalQ[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, True, PalindromeQ[FromDigits[v[[i[[1, 1]] ;; -1]]]]]]; Join[{0}, Select[Range[1, 10^5, 2], PalindromeQ[IntegerDigits[#, 2]] && lazyTribPalQ[#] &]] %Y A352106 Intersection of A006995 and A352105. %Y A352106 Cf. A007088, A352103. %Y A352106 Similar sequences: A095309, A331193, A331894, A351713, A351718, A352088. %K A352106 nonn,base %O A352106 1,3 %A A352106 _Amiram Eldar_, Mar 05 2022