cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352113 Expansion of e.g.f. (1 - log(1 - 3*x))^(1/3).

This page as a plain text file.
%I A352113 #14 Mar 06 2022 08:34:22
%S A352113 1,1,1,10,64,874,11602,214696,4287376,102791944,2706467608,
%T A352113 80520419440,2616373545040,93309672227680,3598524149027680,
%U A352113 149819807423180800,6681701058862660480,318224146460638476160,16106859257541255648640,863764371283534316220160
%N A352113 Expansion of e.g.f. (1 - log(1 - 3*x))^(1/3).
%F A352113 a(n) = Sum_{k=0..n} (-3)^(n-k) * (Product_{j=0..k-1} (-3*j+1)) * Stirling1(n,k).
%F A352113 a(n) ~ n! * 3^(n-1) / (log(n)^(2/3) * n) * (1 - 2*(gamma + 1)/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Mar 05 2022
%t A352113 m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 3*x])^(1/3), {x, 0, m}], x] (* _Amiram Eldar_, Mar 05 2022 *)
%o A352113 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-3*x))^(1/3)))
%o A352113 (PARI) a(n) = sum(k=0, n, (-3)^(n-k)*prod(j=0, k-1, -3*j+1)*stirling(n, k, 1));
%Y A352113 Cf. A352075, A352114.
%Y A352113 Cf. A352070.
%K A352113 nonn
%O A352113 0,4
%A A352113 _Seiichi Manyama_, Mar 05 2022