This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352114 #14 Mar 06 2022 08:34:07 %S A352114 1,1,1,17,129,2529,42753,1080561,28269825,910318785,31733067777, %T A352114 1260881785041,54451914027393,2588888715388065,132887134408562433, %U A352114 7371812870053439409,437841346658159352321,27782111830252836998529,1873198439610729939408897 %N A352114 Expansion of e.g.f. (1 - log(1 - 4*x))^(1/4). %F A352114 a(n) = Sum_{k=0..n} (-4)^(n-k) * (Product_{j=0..k-1} (-4*j+1)) * Stirling1(n,k). %F A352114 a(n) ~ n! * 2^(2*n-2) / (log(n)^(3/4) * n) * (1 - 3*(gamma + 1)/(4*log(n))), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Mar 05 2022 %t A352114 m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 4*x])^(1/4), {x, 0, m}], x] (* _Amiram Eldar_, Mar 05 2022 *) %o A352114 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-4*x))^(1/4))) %o A352114 (PARI) a(n) = sum(k=0, n, (-4)^(n-k)*prod(j=0, k-1, -4*j+1)*stirling(n, k, 1)); %Y A352114 Cf. A352075, A352113. %Y A352114 Cf. A352073. %K A352114 nonn %O A352114 0,4 %A A352114 _Seiichi Manyama_, Mar 05 2022