This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352122 #13 Mar 06 2022 08:41:11 %S A352122 1,1,-5,37,-413,6421,-128285,3125557,-89781053,2969440021, %T A352122 -111109062365,4639580153077,-213856576973693,10784605095793621, %U A352122 -590598038062108445,34901993971832092597,-2213771863243583654333,150004882482828402563221 %N A352122 Expansion of e.g.f. (2 - exp(-3*x))^(1/3). %F A352122 a(n) = Sum_{k=0..n} (-3)^(n-k) * (Product_{j=0..k-1} (-3*j+1)) * Stirling2(n,k). %F A352122 a(n) ~ n! * (-1)^(n+1) * Gamma(1/3) * 3^(n - 1/2) / (Pi * 2^(2/3) * n^(4/3) * log(2)^(n - 1/3)). - _Vaclav Kotesovec_, Mar 06 2022 %t A352122 m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[-3*x])^(1/3), {x, 0, m}], x] (* _Amiram Eldar_, Mar 05 2022 *) %o A352122 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((2-exp(-3*x))^(1/3))) %o A352122 (PARI) a(n) = sum(k=0, n, (-3)^(n-k)*prod(j=0, k-1, -3*j+1)*stirling(n, k, 2)); %Y A352122 Cf. A352121, A352123. %Y A352122 Cf. A352113. %K A352122 sign %O A352122 0,3 %A A352122 _Seiichi Manyama_, Mar 05 2022