cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352123 Expansion of e.g.f. (2 - exp(-4*x))^(1/4).

This page as a plain text file.
%I A352123 #13 Mar 06 2022 08:41:21
%S A352123 1,1,-7,73,-1135,24241,-659767,21796153,-846456415,37772943841,
%T A352123 -1904103268327,106992035096233,-6630198107231695,449171668238551441,
%U A352123 -33024202381308836887,2618743082761141212313,-222782402553043700662975,20238957866498067052271041
%N A352123 Expansion of e.g.f. (2 - exp(-4*x))^(1/4).
%F A352123 a(n) = Sum_{k=0..n} (-4)^(n-k) * (Product_{j=0..k-1} (-4*j+1)) * Stirling2(n,k).
%F A352123 a(n) ~ n! * (-1)^(n+1) * Gamma(1/4) * 2^(2*n - 9/4) / (Pi * n^(5/4) * log(2)^(n -1/4)). - _Vaclav Kotesovec_, Mar 06 2022
%t A352123 m = 17; Range[0, m]! * CoefficientList[Series[(2 - Exp[-4*x])^(1/4), {x, 0, m}], x] (* _Amiram Eldar_, Mar 05 2022 *)
%o A352123 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((2-exp(-4*x))^(1/4)))
%o A352123 (PARI) a(n) = sum(k=0, n, (-4)^(n-k)*prod(j=0, k-1, -4*j+1)*stirling(n, k, 2));
%Y A352123 Cf. A352121, A352122.
%Y A352123 Cf. A352114.
%K A352123 sign
%O A352123 0,3
%A A352123 _Seiichi Manyama_, Mar 05 2022