This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352129 #6 Mar 18 2022 00:21:40 %S A352129 1,0,0,1,0,0,1,0,1,1,1,1,1,2,1,3,2,3,4,3,5,5,6,6,9,8,10,12,13,15,17, %T A352129 20,20,26,26,32,35,39,44,50,55,61,71,76,87,96,108,117,135,145,164,181, %U A352129 200,222,246,272,298,334,363,404,443 %N A352129 Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts. %e A352129 The a(n) strict partitions for selected n: %e A352129 n = 3 13 15 18 20 22 %e A352129 ------------------------------------------------------------------ %e A352129 (2,1) (6,5,2) (10,5) (12,6) (12,7,1) (12,8,2) %e A352129 (6,4,2,1) (6,4,3,2) (8,7,3) (8,5,4,3) (8,6,5,3) %e A352129 (6,5,3,1) (8,5,3,2) (8,6,4,2) (8,7,5,2) %e A352129 (8,6,3,1) (8,7,4,1) (12,7,2,1) %e A352129 (8,6,3,2,1) (8,6,4,3,1) %e A352129 (8,7,4,2,1) %t A352129 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A352129 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],_?OddQ]==Count[conj[#],_?EvenQ]&]],{n,0,30}] %Y A352129 This is the strict case of A045931, ranked by A350848 (zeros of A350941). %Y A352129 The conjugate version is A239241, non-strict A045931 (ranked by A325698). %Y A352129 A000041 counts integer partitions, strict A000009. %Y A352129 A130780 counts partitions with no more even than odd parts, strict A239243. %Y A352129 A171966 counts partitions with no more odd than even parts, strict A239240. %Y A352129 There are four statistics: %Y A352129 - A257991 = # of odd parts, conjugate A344616. %Y A352129 - A257992 = # of even parts, conjugate A350847. %Y A352129 There are four other pairings of statistics: %Y A352129 - A277579, ranked by A349157, strict A352131. %Y A352129 - A277103, ranked by A350944. %Y A352129 - A277579, ranked by A350943, strict A352130. %Y A352129 - A350948, ranked by A350945. %Y A352129 There are three double-pairings of statistics: %Y A352129 - A351976, ranked by A350949. %Y A352129 - A351977, ranked by A350946, strict A352128. %Y A352129 - A351981, ranked by A351980. %Y A352129 The case of all four statistics equal is A351978, ranked by A350947. %Y A352129 Cf. A000070, A098123, A195017, A236559, A241638, A350839, A350849, A350942. %K A352129 nonn %O A352129 0,14 %A A352129 _Gus Wiseman_, Mar 15 2022