This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352130 #6 Mar 18 2022 00:21:49 %S A352130 1,0,1,1,1,1,1,2,2,3,3,3,3,4,5,6,7,7,8,9,11,12,13,14,16,18,21,23,25, %T A352130 28,31,34,37,41,45,50,55,60,65,72,79,86,93,102,111,121,132,143,155, %U A352130 169,183,197,213,231,251,271,292,315,340,367,396 %N A352130 Number of strict integer partitions of n with as many odd parts as even conjugate parts. %e A352130 The a(n) strict partitions for selected n: %e A352130 n = 2 7 9 13 14 15 16 %e A352130 -------------------------------------------------------------------- %e A352130 (2) (6,1) (8,1) (12,1) (14) (14,1) (16) %e A352130 (4,2,1) (4,3,2) (6,4,3) (6,5,3) (6,5,4) (8,5,3) %e A352130 (6,2,1) (8,3,2) (10,3,1) (8,4,3) (12,3,1) %e A352130 (10,2,1) (6,4,3,1) (10,3,2) (6,5,4,1) %e A352130 (8,3,2,1) (12,2,1) (8,4,3,1) %e A352130 (6,5,3,1) (10,3,2,1) %e A352130 (6,4,3,2,1) %t A352130 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A352130 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?OddQ]==Count[conj[#],_?EvenQ]&]],{n,0,30}] %Y A352130 This is the strict case of A277579, ranked by A350943 (zeros of A350942). %Y A352130 The conjugate version is A352131, non-strict A277579 (ranked by A349157). %Y A352130 A000041 counts integer partitions, strict A000009. %Y A352130 A130780 counts partitions with no more even than odd parts, strict A239243. %Y A352130 A171966 counts partitions with no more odd than even parts, strict A239240. %Y A352130 There are four statistics: %Y A352130 - A257991 = # of odd parts, conjugate A344616. %Y A352130 - A257992 = # of even parts, conjugate A350847. %Y A352130 There are four other pairings of statistics: %Y A352130 - A045931, ranked by A325698, strict A239241. %Y A352130 - A045931, ranked by A350848, strict A352129. %Y A352130 - A277103, ranked by A350944, strict new. %Y A352130 - A350948, ranked by A350945, strict new. %Y A352130 There are three double-pairings of statistics: %Y A352130 - A351976, ranked by A350949, strict A010054? %Y A352130 - A351977, ranked by A350946, strict A352128. %Y A352130 - A351981, ranked by A351980. strict A014105? %Y A352130 The case of all four statistics equal is A351978, ranked by A350947. %Y A352130 Cf. A027187, A027193, A103919, A122111, A236559, A325039, A344607, A344651, A345196, A350950, A350951. %K A352130 nonn %O A352130 0,8 %A A352130 _Gus Wiseman_, Mar 15 2022