This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352131 #5 Mar 18 2022 00:21:58 %S A352131 1,0,0,1,0,1,1,1,0,1,2,1,1,2,3,2,2,3,4,3,4,5,5,5,6,7,7,8,10,10,10,12, %T A352131 14,15,14,17,21,20,20,25,28,28,29,34,39,39,40,47,52,53,56,64,70,71,77, %U A352131 86,92,97,104,114,122 %N A352131 Number of strict integer partitions of n with same number of even parts as odd conjugate parts. %e A352131 The a(n) strict partitions for selected n: %e A352131 n = 3 10 14 18 21 24 %e A352131 ---------------------------------------------------------------------- %e A352131 (2,1) (6,4) (8,6) (10,8) (11,10) (8,7,5,4) %e A352131 (4,3,2,1) (5,4,3,2) (6,5,4,3) (8,6,4,3) (9,8,4,3) %e A352131 (6,5,2,1) (7,6,3,2) (8,7,4,2) (10,8,4,2) %e A352131 (8,7,2,1) (10,8,2,1) (10,9,3,2) %e A352131 (6,5,4,3,2,1) (11,10,2,1) %e A352131 (8,6,4,3,2,1) %t A352131 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A352131 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,_?EvenQ]==Count[conj[#],_?OddQ]&]],{n,0,30}] %Y A352131 This is the strict case of A277579, ranked by A349157 (zeros of A350849). %Y A352131 The conjugate version is A352130, non-strict A277579 (ranked by A350943). %Y A352131 A000041 counts integer partitions, strict A000009. %Y A352131 A130780 counts partitions with no more even than odd parts, strict A239243. %Y A352131 A171966 counts partitions with no more odd than even parts, strict A239240. %Y A352131 There are four statistics: %Y A352131 - A257991 = # of odd parts, conjugate A344616. %Y A352131 - A257992 = # of even parts, conjugate A350847. %Y A352131 There are four other pairings of statistics: %Y A352131 - A045931, ranked by A325698, strict A239241. %Y A352131 - A045931, ranked by A350848, strict A352129. %Y A352131 - A277103, ranked by A350944. %Y A352131 - A350948, ranked by A350945. %Y A352131 There are three double-pairings of statistics: %Y A352131 - A351976, ranked by A350949. %Y A352131 - A351977, ranked by A350946, strict A352128. %Y A352131 - A351981, ranked by A351980. %Y A352131 The case of all four statistics equal is A351978, ranked by A350947. %Y A352131 Cf. A027187, A027193, A103919, A122111, A236559, A325039, A344607, A344651, A345196, A350942, A350950, A350951. %K A352131 nonn %O A352131 0,11 %A A352131 _Gus Wiseman_, Mar 15 2022