This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352132 #12 May 16 2023 10:40:09 %S A352132 6,10,118,119,129,155,287,295,299,319,377,413,447,469,511,538,629,681, %T A352132 699,717,785,831,865,913,1003,1073,1077,1111,1115,1137,1141,1145,1267, %U A352132 1343,1345,1379,1393,1437,1469,1509,1687,1817,1835,1919,1923,1981,2167,2173,2177,2195,2245,2429,2479,2569 %N A352132 Numbers k such that k, k+4, 3*k+4 and 3*k+8 are all semiprimes. %C A352132 Numbers k such that k and 3*k+4 are both in A175648. %C A352132 Even terms are 2*k for k in A174920. %H A352132 Robert Israel, <a href="/A352132/b352132.txt">Table of n, a(n) for n = 1..10000</a> %e A352132 a(4) = 119 is a term because 119 = 7*17, 119+4 = 123 = 3*41, 3*119+4 = 361 = 19^2 and 3*119+8 = 365 = 5*73 are semiprimes. %p A352132 filter:= proc(x) %p A352132 numtheory:-bigomega(x) = 2 and numtheory:-bigomega(x+4) = 2 and numtheory:-bigomega(3*x+4) = 2 and numtheory:-bigomega(3*x+8)=2 %p A352132 end proc: %p A352132 select(filter, [$1..3000]); %t A352132 okQ[k_] := AllTrue[{k, k+4, 3k+4, 3k+8}, PrimeOmega[#] == 2&]; %t A352132 Select[Range[3000], okQ] (* _Jean-François Alcover_, May 16 2023 *) %Y A352132 Cf. A001358, A174920, A175648. %K A352132 nonn %O A352132 1,1 %A A352132 _J. M. Bergot_ and _Robert Israel_, Mar 05 2022