This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352133 #20 Mar 14 2022 17:54:35 %S A352133 91,189,1729,12691,68705,97309,201159,400491,2484755,2554741,3587409, %T A352133 3767491,8741691,15407765,26122131,54814509,121861441,139361059, %U A352133 168632191,223264809,236019771,295233841,355957875,448404255,508476241,525518721,1041378589,2593625571,2746367559,2874318841,4328420941,5193550999 %N A352133 Centered cube numbers that can be written as sums of two other cubes in at least one way. %C A352133 Numbers that are the sum of two consecutive cubes and at least one other sum of two cubes: a(n) = b(n)^3 + (b(n) + 1)^3 = c(n)^3 + d(n)^3, with c(n) > b(n) and c(n) > |d(n)|, and where b(n)=A352134(n), c(n)=A352135(n) and d(n)=A352136(n). %C A352133 Subsequence of A005898. %H A352133 Vladimir Pletser, <a href="/A352133/b352133.txt">Table of n, a(n) for n = 1..275</a> %H A352133 A. Grinstein, <a href="https://web.archive.org/web/20040320144821/http://zadok.org/mattandloraine/1729.html">Ramanujan and 1729</a>, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998. %H A352133 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredCubeNumber.html">Centered Cube Number</a> %F A352133 a(n) = A352134(n)^3 + (A352134(n) + 1)^3 = A352135(n)^3 + A352136(n)^3. %e A352133 91 belongs to the sequence because 91 = 3^3 + 4^3 = 6^3 + (-5)^3. %Y A352133 Cf. A005898, A001235, A272885, A352134, A352135, A352136, A352220, A352221, A352222, A352223, A352224, A352225. %K A352133 nonn %O A352133 1,1 %A A352133 _Vladimir Pletser_, Mar 05 2022