cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352139 Expansion of e.g.f. 1/(exp(x) - log(1 - x)).

This page as a plain text file.
%I A352139 #23 Mar 10 2022 06:03:03
%S A352139 1,-2,6,-27,161,-1205,10799,-113043,1351461,-18183781,271784079,
%T A352139 -4469044657,80160267791,-1557710354083,32597642189657,
%U A352139 -730897865864471,17480390183397209,-444198879957594857,11951585821669838395,-339434402344422296117
%N A352139 Expansion of e.g.f. 1/(exp(x) - log(1 - x)).
%H A352139 Seiichi Manyama, <a href="/A352139/b352139.txt">Table of n, a(n) for n = 0..421</a>
%F A352139 a(0) = 1; a(n) = -Sum_{k=1..n} ((k-1)! + 1) * binomial(n,k) * a(n-k).
%t A352139 m = 19; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - Log[1 - x]), {x, 0, m}], x] (* _Amiram Eldar_, Mar 06 2022 *)
%o A352139 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-log(1-x))))
%o A352139 (PARI) a(n) = if(n==0, 1, -sum(k=1, n, ((k-1)!+1)*binomial(n, k)*a(n-k)));
%Y A352139 Cf. A352138, A352146, A352147.
%Y A352139 Cf. A006252, A038507.
%K A352139 sign
%O A352139 0,2
%A A352139 _Seiichi Manyama_, Mar 06 2022