cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352140 Numbers whose prime factorization has all even prime indices and all odd exponents.

This page as a plain text file.
%I A352140 #14 Mar 13 2022 19:01:19
%S A352140 1,3,7,13,19,21,27,29,37,39,43,53,57,61,71,79,87,89,91,101,107,111,
%T A352140 113,129,131,133,139,151,159,163,173,181,183,189,193,199,203,213,223,
%U A352140 229,237,239,243,247,251,259,263,267,271,273,281,293,301,303,311,317
%N A352140 Numbers whose prime factorization has all even prime indices and all odd exponents.
%C A352140 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
%C A352140 A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
%C A352140 Also Heinz numbers of integer partitions with all even parts and all odd multiplicities, counted by A055922 aerated.
%C A352140 All terms are odd. - _Michael S. Branicky_, Mar 12 2022
%F A352140 Intersection of A066207 and A268335.
%F A352140 A257991(a(n)) = A162641(a(n)) = 0.
%F A352140 A162642(a(n)) = A001221(a(n)).
%F A352140 A257992(a(n)) = A001222(a(n)).
%e A352140 The terms together with their prime indices begin:
%e A352140       1 = 1
%e A352140       3 = prime(2)^1
%e A352140       7 = prime(4)^1
%e A352140      13 = prime(6)^1
%e A352140      19 = prime(8)^1
%e A352140      21 = prime(4)^1 prime(2)^1
%e A352140      27 = prime(2)^3
%e A352140      29 = prime(10)^1
%e A352140      37 = prime(12)^1
%e A352140      39 = prime(6)^1 prime(2)^1
%e A352140      43 = prime(14)^1
%e A352140      53 = prime(16)^1
%e A352140      57 = prime(8)^1 prime(2)^1
%e A352140      61 = prime(18)^1
%e A352140      71 = prime(20)^1
%t A352140 Select[Range[100],And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
%o A352140 (Python)
%o A352140 from sympy import factorint, primepi
%o A352140 def ok(n):
%o A352140     if n%2 == 0: return False
%o A352140     return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items())
%o A352140 print([k for k in range(318) if ok(k)]) # _Michael S. Branicky_, Mar 12 2022
%Y A352140 The restriction to primes is A031215.
%Y A352140 These partitions are counted by A055922 (aerated).
%Y A352140 The first condition alone is A066207, counted by A035363.
%Y A352140 The squarefree case is A258117.
%Y A352140 The second condition alone is A268335, counted by A055922.
%Y A352140 A056166 = exponents all prime, counted by A055923.
%Y A352140 A066208 = prime indices all odd, counted by A000009.
%Y A352140 A109297 = same indices as exponents, counted by A114640.
%Y A352140 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A352140 A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
%Y A352140 A162641 counts even prime exponents, odd A162642.
%Y A352140 A257991 counts odd prime indices, even A257992.
%Y A352140 A325131 = disjoint indices from exponents, counted by A114639.
%Y A352140 A346068 = indices and exponents all prime, counted by A351982.
%Y A352140 A351979 = odd indices with even exponents, counted by A035457.
%Y A352140 A352141 = even indices with even exponents, counted by A035444.
%Y A352140 A352142 = odd indices with odd exponents, counted by A117958.
%Y A352140 Cf. A000720, A028260, A055396, A061395, A181819, A195017, A241638, A276078, A324517, A324524, A324525, A325698.
%K A352140 nonn
%O A352140 1,2
%A A352140 _Gus Wiseman_, Mar 11 2022