cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352141 Numbers whose prime factorization has all even indices and all even exponents.

This page as a plain text file.
%I A352141 #11 Sep 19 2022 07:23:46
%S A352141 1,9,49,81,169,361,441,729,841,1369,1521,1849,2401,2809,3249,3721,
%T A352141 3969,5041,6241,6561,7569,7921,8281,10201,11449,12321,12769,13689,
%U A352141 16641,17161,17689,19321,21609,22801,25281,26569,28561,29241,29929,32761,33489,35721
%N A352141 Numbers whose prime factorization has all even indices and all even exponents.
%C A352141 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
%C A352141 A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
%C A352141 These are the Heinz numbers of partitions with all even parts and all even multiplicities, counted by A035444.
%H A352141 Amiram Eldar, <a href="/A352141/b352141.txt">Table of n, a(n) for n = 1..10000</a>
%F A352141 Intersection of A000290 and A066207.
%F A352141 A257991(a(n)) = A162642(a(n)) = 0.
%F A352141 A257992(a(n)) = A001222(a(n)).
%F A352141 A162641(a(n)) = A001221(a(n)).
%F A352141 Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k)^2) = 1.163719... . - _Amiram Eldar_, Sep 19 2022
%e A352141 The terms together with their prime indices begin:
%e A352141      1 = 1
%e A352141      9 = prime(2)^2
%e A352141     49 = prime(4)^2
%e A352141     81 = prime(2)^4
%e A352141    169 = prime(6)^2
%e A352141    361 = prime(8)^2
%e A352141    441 = prime(2)^2 prime(4)^2
%e A352141    729 = prime(2)^6
%e A352141    841 = prime(10)^2
%e A352141   1369 = prime(12)^2
%e A352141   1521 = prime(2)^2 prime(6)^2
%e A352141   1849 = prime(14)^2
%e A352141   2401 = prime(4)^4
%e A352141   2809 = prime(16)^2
%e A352141   3249 = prime(2)^2 prime(8)^2
%e A352141   3721 = prime(18)^2
%e A352141   3969 = prime(2)^4 prime(4)^2
%t A352141 Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
%o A352141 (Python)
%o A352141 from itertools import count, islice
%o A352141 from sympy import factorint, primepi
%o A352141 def A352141_gen(startvalue=1): # generator of terms >= startvalue
%o A352141     return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1)))
%o A352141 A352141_list = list(islice(A352141_gen(),30)) # _Chai Wah Wu_, Mar 18 2022
%Y A352141 The second condition alone (all even exponents) is A000290, counted by A035363.
%Y A352141 The restriction to primes is A031215.
%Y A352141 These partitions are counted by A035444.
%Y A352141 The first condition alone is A066207, counted by A035363, squarefree A258117.
%Y A352141 A056166 = exponents all prime, counted by A055923.
%Y A352141 A066208 = prime indices all odd, counted by A000009.
%Y A352141 A109297 = same indices as exponents, counted by A114640.
%Y A352141 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A352141 A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
%Y A352141 A162641 counts even exponents, odd A162642.
%Y A352141 A257991 counts odd indices, even A257992.
%Y A352141 A325131 = disjoint indices from exponents, counted by A114639.
%Y A352141 A346068 = indices and exponents all prime, counted by A351982.
%Y A352141 A351979 = odd indices with even exponents, counted by A035457.
%Y A352141 A352140 = even indices with odd exponents, counted by A055922 aerated.
%Y A352141 A352142 = odd indices with odd exponents, counted by A117958.
%Y A352141 Cf. A000720, A028260, A055396, A061395, A181819, A195017, A241638, A268335, A276078, A324524, A324525, A324588, A325698, A325700, A352143.
%K A352141 nonn
%O A352141 1,2
%A A352141 _Gus Wiseman_, Mar 18 2022