This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352141 #11 Sep 19 2022 07:23:46 %S A352141 1,9,49,81,169,361,441,729,841,1369,1521,1849,2401,2809,3249,3721, %T A352141 3969,5041,6241,6561,7569,7921,8281,10201,11449,12321,12769,13689, %U A352141 16641,17161,17689,19321,21609,22801,25281,26569,28561,29241,29929,32761,33489,35721 %N A352141 Numbers whose prime factorization has all even indices and all even exponents. %C A352141 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222. %C A352141 A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222. %C A352141 These are the Heinz numbers of partitions with all even parts and all even multiplicities, counted by A035444. %H A352141 Amiram Eldar, <a href="/A352141/b352141.txt">Table of n, a(n) for n = 1..10000</a> %F A352141 Intersection of A000290 and A066207. %F A352141 A257991(a(n)) = A162642(a(n)) = 0. %F A352141 A257992(a(n)) = A001222(a(n)). %F A352141 A162641(a(n)) = A001221(a(n)). %F A352141 Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k)^2) = 1.163719... . - _Amiram Eldar_, Sep 19 2022 %e A352141 The terms together with their prime indices begin: %e A352141 1 = 1 %e A352141 9 = prime(2)^2 %e A352141 49 = prime(4)^2 %e A352141 81 = prime(2)^4 %e A352141 169 = prime(6)^2 %e A352141 361 = prime(8)^2 %e A352141 441 = prime(2)^2 prime(4)^2 %e A352141 729 = prime(2)^6 %e A352141 841 = prime(10)^2 %e A352141 1369 = prime(12)^2 %e A352141 1521 = prime(2)^2 prime(6)^2 %e A352141 1849 = prime(14)^2 %e A352141 2401 = prime(4)^4 %e A352141 2809 = prime(16)^2 %e A352141 3249 = prime(2)^2 prime(8)^2 %e A352141 3721 = prime(18)^2 %e A352141 3969 = prime(2)^4 prime(4)^2 %t A352141 Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&] %o A352141 (Python) %o A352141 from itertools import count, islice %o A352141 from sympy import factorint, primepi %o A352141 def A352141_gen(startvalue=1): # generator of terms >= startvalue %o A352141 return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1))) %o A352141 A352141_list = list(islice(A352141_gen(),30)) # _Chai Wah Wu_, Mar 18 2022 %Y A352141 The second condition alone (all even exponents) is A000290, counted by A035363. %Y A352141 The restriction to primes is A031215. %Y A352141 These partitions are counted by A035444. %Y A352141 The first condition alone is A066207, counted by A035363, squarefree A258117. %Y A352141 A056166 = exponents all prime, counted by A055923. %Y A352141 A066208 = prime indices all odd, counted by A000009. %Y A352141 A109297 = same indices as exponents, counted by A114640. %Y A352141 A112798 lists prime indices, reverse A296150, length A001222, sum A056239. %Y A352141 A124010 gives prime signature, sorted A118914, length A001221, sum A001222. %Y A352141 A162641 counts even exponents, odd A162642. %Y A352141 A257991 counts odd indices, even A257992. %Y A352141 A325131 = disjoint indices from exponents, counted by A114639. %Y A352141 A346068 = indices and exponents all prime, counted by A351982. %Y A352141 A351979 = odd indices with even exponents, counted by A035457. %Y A352141 A352140 = even indices with odd exponents, counted by A055922 aerated. %Y A352141 A352142 = odd indices with odd exponents, counted by A117958. %Y A352141 Cf. A000720, A028260, A055396, A061395, A181819, A195017, A241638, A268335, A276078, A324524, A324525, A324588, A325698, A325700, A352143. %K A352141 nonn %O A352141 1,2 %A A352141 _Gus Wiseman_, Mar 18 2022