cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

This page as a plain text file.
%I A352142 #14 Mar 19 2022 02:33:03
%S A352142 1,2,5,8,10,11,17,22,23,31,32,34,40,41,46,47,55,59,62,67,73,82,83,85,
%T A352142 88,94,97,103,109,110,115,118,125,127,128,134,136,137,146,149,155,157,
%U A352142 160,166,167,170,179,184,187,191,194,197,205,206,211,218,227,230
%N A352142 Numbers whose prime factorization has all odd indices and all odd exponents.
%C A352142 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
%C A352142 A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
%C A352142 These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.
%H A352142 David A. Corneth, <a href="/A352142/b352142.txt">Table of n, a(n) for n = 1..10000</a>
%F A352142 Intersection of A066208 and A268335.
%F A352142 A257991(a(n)) = A001222(a(n)).
%F A352142 A162642(a(n)) = A001221(a(n)).
%F A352142 A257992(a(n)) = A162641(a(n)) = 0.
%e A352142 The terms together with their prime indices begin:
%e A352142    1 = 1
%e A352142    2 = prime(1)
%e A352142    5 = prime(3)
%e A352142    8 = prime(1)^3
%e A352142   10 = prime(1) prime(3)
%e A352142   11 = prime(5)
%e A352142   17 = prime(7)
%e A352142   22 = prime(1) prime(5)
%e A352142   23 = prime(9)
%e A352142   31 = prime(11)
%e A352142   32 = prime(1)^5
%e A352142   34 = prime(1) prime(7)
%e A352142   40 = prime(1)^3 prime(3)
%t A352142 Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
%o A352142 (Python)
%o A352142 from itertools import count, islice
%o A352142 from sympy import primepi, factorint
%o A352142 def A352142_gen(startvalue=1): # generator of terms >= startvalue
%o A352142     return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
%o A352142 A352142_list = list(islice(A352142_gen(),30)) # _Chai Wah Wu_, Mar 18 2022
%Y A352142 The restriction to primes is A031368.
%Y A352142 The first condition alone is A066208, counted by A000009.
%Y A352142 These partitions are counted by A117958.
%Y A352142 The squarefree case is A258116, even A258117.
%Y A352142 The second condition alone is A268335, counted by A055922.
%Y A352142 The even-even version is A352141 counted by A035444.
%Y A352142 A000290 = exponents all even, counted by A035363.
%Y A352142 A056166 = exponents all prime, counted by A055923.
%Y A352142 A066207 = indices all even, counted by A035363 (complement A086543).
%Y A352142 A109297 = same indices as exponents, counted by A114640.
%Y A352142 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A352142 A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
%Y A352142 A162641 counts even prime exponents, odd A162642.
%Y A352142 A257991 counts odd prime indices, even A257992.
%Y A352142 A325131 = disjoint indices from exponents, counted by A114639.
%Y A352142 A346068 = indices and exponents all prime, counted by A351982.
%Y A352142 A351979 = odd indices with even exponents, counted by A035457.
%Y A352142 A352140 = even indices with odd exponents, counted by A055922 aerated.
%Y A352142 A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.
%Y A352142 Cf. A000720, A028260, A055396, A061395, A106529, A181819, A195017, A241638, A276078, A324517, A324524, A324525, A325698, A325700.
%K A352142 nonn
%O A352142 1,2
%A A352142 _Gus Wiseman_, Mar 18 2022