cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352143 Numbers whose prime indices and conjugate prime indices are all odd.

This page as a plain text file.
%I A352143 #8 Mar 18 2022 13:09:30
%S A352143 1,2,5,8,11,17,20,23,31,32,41,44,47,59,67,68,73,80,83,92,97,103,109,
%T A352143 124,125,127,128,137,149,157,164,167,176,179,188,191,197,211,227,233,
%U A352143 236,241,257,268,269,272,275,277,283,292,307,313,320,331,332,347,353
%N A352143 Numbers whose prime indices and conjugate prime indices are all odd.
%C A352143 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
%C A352143 A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
%C A352143 These are the Heinz numbers of integer partitions whose parts and conjugate parts are all odd. They are counted by A053253.
%F A352143 Intersection of A066208 and A346635.
%e A352143 The terms together with their prime indices begin:
%e A352143    1: {}
%e A352143    2: {1}
%e A352143    5: {3}
%e A352143    8: {1,1,1}
%e A352143   11: {5}
%e A352143   17: {7}
%e A352143   20: {1,1,3}
%e A352143   23: {9}
%e A352143   31: {11}
%e A352143   32: {1,1,1,1,1}
%e A352143   41: {13}
%e A352143   44: {1,1,5}
%e A352143   47: {15}
%e A352143   59: {17}
%e A352143   67: {19}
%e A352143   68: {1,1,7}
%e A352143   73: {21}
%e A352143   80: {1,1,1,1,3}
%t A352143 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A352143 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A352143 Select[Range[100],And@@OddQ/@primeMS[#]&&And@@OddQ/@conj[primeMS[#]]&]
%Y A352143 The restriction to primes is A031368.
%Y A352143 These partitions appear to be counted by A053253.
%Y A352143 The even version is A066207^2.
%Y A352143 For even instead of odd conjugate parts we get A066208^2.
%Y A352143 The first condition alone (all odd indices) is A066208, counted by A000009.
%Y A352143 The second condition alone is A346635, counted by A000009.
%Y A352143 A055922 counts partitions with odd multiplicities, ranked by A268335.
%Y A352143 A066207 = indices all even, counted by A035363 (complement A086543).
%Y A352143 A109297 = same indices as exponents, counted by A114640.
%Y A352143 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A352143 A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
%Y A352143 A162642 counts odd prime exponents, even A162641.
%Y A352143 A238745 gives the Heinz number of the conjugate prime signature.
%Y A352143 A257991 counts odd indices, even A257992.
%Y A352143 A258116 ranks strict partitions with all odd parts, even A258117.
%Y A352143 A351979 = odd indices and even multiplicities, counted by A035457.
%Y A352143 A352140 = even indices and odd multiplicities, counted by A055922 aerated.
%Y A352143 A352141 = even indices and even multiplicities, counted by A035444.
%Y A352143 A352142 = odd indices and odd multiplicities, counted by A117958.
%Y A352143 Cf. A000290, A000701, A000720, A028260, A045931, A046682, A055396, A061395, A195017, A241638, A325698, A325700.
%K A352143 nonn
%O A352143 1,2
%A A352143 _Gus Wiseman_, Mar 18 2022