This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352143 #8 Mar 18 2022 13:09:30 %S A352143 1,2,5,8,11,17,20,23,31,32,41,44,47,59,67,68,73,80,83,92,97,103,109, %T A352143 124,125,127,128,137,149,157,164,167,176,179,188,191,197,211,227,233, %U A352143 236,241,257,268,269,272,275,277,283,292,307,313,320,331,332,347,353 %N A352143 Numbers whose prime indices and conjugate prime indices are all odd. %C A352143 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222. %C A352143 A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222. %C A352143 These are the Heinz numbers of integer partitions whose parts and conjugate parts are all odd. They are counted by A053253. %F A352143 Intersection of A066208 and A346635. %e A352143 The terms together with their prime indices begin: %e A352143 1: {} %e A352143 2: {1} %e A352143 5: {3} %e A352143 8: {1,1,1} %e A352143 11: {5} %e A352143 17: {7} %e A352143 20: {1,1,3} %e A352143 23: {9} %e A352143 31: {11} %e A352143 32: {1,1,1,1,1} %e A352143 41: {13} %e A352143 44: {1,1,5} %e A352143 47: {15} %e A352143 59: {17} %e A352143 67: {19} %e A352143 68: {1,1,7} %e A352143 73: {21} %e A352143 80: {1,1,1,1,3} %t A352143 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A352143 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A352143 Select[Range[100],And@@OddQ/@primeMS[#]&&And@@OddQ/@conj[primeMS[#]]&] %Y A352143 The restriction to primes is A031368. %Y A352143 These partitions appear to be counted by A053253. %Y A352143 The even version is A066207^2. %Y A352143 For even instead of odd conjugate parts we get A066208^2. %Y A352143 The first condition alone (all odd indices) is A066208, counted by A000009. %Y A352143 The second condition alone is A346635, counted by A000009. %Y A352143 A055922 counts partitions with odd multiplicities, ranked by A268335. %Y A352143 A066207 = indices all even, counted by A035363 (complement A086543). %Y A352143 A109297 = same indices as exponents, counted by A114640. %Y A352143 A112798 lists prime indices, reverse A296150, length A001222, sum A056239. %Y A352143 A124010 gives prime signature, sorted A118914, length A001221, sum A001222. %Y A352143 A162642 counts odd prime exponents, even A162641. %Y A352143 A238745 gives the Heinz number of the conjugate prime signature. %Y A352143 A257991 counts odd indices, even A257992. %Y A352143 A258116 ranks strict partitions with all odd parts, even A258117. %Y A352143 A351979 = odd indices and even multiplicities, counted by A035457. %Y A352143 A352140 = even indices and odd multiplicities, counted by A055922 aerated. %Y A352143 A352141 = even indices and even multiplicities, counted by A035444. %Y A352143 A352142 = odd indices and odd multiplicities, counted by A117958. %Y A352143 Cf. A000290, A000701, A000720, A028260, A045931, A046682, A055396, A061395, A195017, A241638, A325698, A325700. %K A352143 nonn %O A352143 1,2 %A A352143 _Gus Wiseman_, Mar 18 2022