cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352147 Expansion of e.g.f. 1/(exp(x) + log(1 + x)).

This page as a plain text file.
%I A352147 #15 Mar 11 2022 08:33:18
%S A352147 1,-2,8,-51,437,-4685,60299,-905583,15543989,-300163717,6440430159,
%T A352147 -152007707357,3913861488767,-109171084473763,3279401359094041,
%U A352147 -105546729767585411,3623462164916028569,-132169615185372857001,5104616345453966073403
%N A352147 Expansion of e.g.f. 1/(exp(x) + log(1 + x)).
%H A352147 Seiichi Manyama, <a href="/A352147/b352147.txt">Table of n, a(n) for n = 0..399</a>
%F A352147 a(0) = 1; a(n) = Sum_{k=1..n} ((-1)^k * (k-1)! - 1) * binomial(n,k) * a(n-k).
%t A352147 m = 18; Range[0, m]! * CoefficientList[Series[1/(Exp[x] + Log[1 + x]), {x, 0, m}], x] (* _Amiram Eldar_, Mar 06 2022 *)
%o A352147 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)+log(1+x))))
%o A352147 (PARI) a(n) = if(n==0, 1, sum(k=1, n, ((-1)^k*(k-1)!-1)*binomial(n, k)*a(n-k)));
%Y A352147 Cf. A352138, A352139, A352146.
%K A352147 sign
%O A352147 0,2
%A A352147 _Seiichi Manyama_, Mar 06 2022