This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352148 #33 Apr 09 2022 11:10:25 %S A352148 0,1,2,3,4,10,11,24,36,44,77,100,141,363,1000,1095,10000,100000, %T A352148 1000000,10000000,100000000,1000000000,10000000000,100000000000, %U A352148 1000000000000,10000000000000,100000000000000,1000000000000000,10000000000000000 %N A352148 Integers m such that nonzero digits of A000217(m) are all the same. %F A352148 Conjecture: a(n) = 10^(n-13) for n >= 17. %t A352148 (Sqrt[8 # + 1] - 1)/2 & /@ %t A352148 Sort[Select[ %t A352148 Flatten[Outer[Times, %t A352148 Table[FromDigits[IntegerDigits[n, 2]], {n, 2^22 - 1}], %t A352148 Range[9]]], IntegerQ[Sqrt[8 # + 1]] &]] %o A352148 (PARI) isok(m) = #Set(select(x->(x>0), digits(m*(m+1)/2))) <= 1; \\ _Michel Marcus_, Mar 06 2022 %o A352148 (Python) %o A352148 from itertools import count, islice %o A352148 from sympy import integer_nthroot %o A352148 def A352148_gen(): # generator of terms %o A352148 yield 0 %o A352148 for l in count(0): %o A352148 for d in range(1,10): %o A352148 for m in range(2**l,2**(l+1)): %o A352148 a, b = integer_nthroot(8*d*int(bin(m)[2:])+1,2) %o A352148 if b: %o A352148 yield (a-1)//2 %o A352148 A352148_list = list(islice(A352148_gen(),10)) # _Chai Wah Wu_, Apr 08 2022 %Y A352148 Cf. A000217, A352057 (resulting triangular numbers). %K A352148 nonn,base,more %O A352148 1,3 %A A352148 _Steven Lu_, Mar 06 2022 %E A352148 a(25)-a(27) from _Chai Wah Wu_, Apr 08 2022 %E A352148 a(28)-a(29) from _Chai Wah Wu_, Apr 09 2022