A352156 Numbers m such that the smallest digit in the decimal expansion of 1/m is 2, ignoring leading and trailing 0's.
4, 5, 16, 36, 40, 44, 45, 50, 108, 160, 216, 252, 288, 292, 308, 360, 364, 375, 396, 400, 404, 440, 444, 450, 500, 1024, 1080, 1375, 1600, 2072, 2160, 2368, 2520, 2880, 2920, 3080, 3125, 3375, 3600, 3640, 3750, 3848, 3960, 4000, 4040, 4125, 4224, 4368, 4400, 4440, 4500, 5000
Offset: 1
Examples
m = 16 is a term since 1/16 = 0.0625 and the smallest term after the leading 0 is 2. m = 216 is a term since 1/216 = 0.004629629629... and the smallest term after the leading 0's is 2. m = 4444 is not a term since 1/4444 = 0.00022502250225... and the smallest term after the leading 0's is 0.
Crossrefs
Programs
-
Mathematica
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 2 &]
-
Python
from itertools import count, islice from sympy import multiplicity, n_order def A352156_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): m2, m5 = multiplicity(2,n), multiplicity(5,n) k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1 c = k//n s = str(m*k//n-c*m).zfill(t) if s == '0' and min(str(c)) == '2': yield n elif '0' not in s and min(str(c).lstrip('0')+s) == '2': yield n A352156_list = list(islice(A352156_gen(),20)) # Chai Wah Wu, Mar 28 2022
Formula
A352153(a(n)) = 2.
Comments