This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352157 #21 Apr 05 2022 09:40:20 %S A352157 3,12,30,120,264,275,296,300,1200,1875,2112,2640,2664,2750,2952,2960, %T A352157 3000,10656,11808,12000,18750,21120,22944,26016,26400,26640,27500, %U A352157 28125,29088,29520,29600,30000,103424,106560,106656,118080,120000,156288,187500,211200,229440 %N A352157 Numbers m such that the smallest digit in the decimal expansion of 1/m is 3, ignoring leading and trailing 0's. %C A352157 Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples). %C A352157 Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart from 1 (A003592) would be terms. %C A352157 If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive terms: 3, 12, 264, 275, 296, 1875, ... %F A352157 A352153(a(n)) = 3. %e A352157 m = 12 is a term since 1/12 = 0.08333333... and the smallest term after the leading 0 is 3. %e A352157 m = 264 is a term since 1/264 = 0.003787878... and the smallest term after the leading 0's is 3. %t A352157 f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 3 &] %o A352157 (Python) %o A352157 from itertools import count, islice %o A352157 from sympy import multiplicity, n_order %o A352157 def A352157_gen(startvalue=1): # generator of terms >= startvalue %o A352157 for n in count(max(startvalue,1)): %o A352157 m2, m5 = multiplicity(2,n), multiplicity(5,n) %o A352157 k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1 %o A352157 c = k//n %o A352157 s = str(m*k//n-c*m).zfill(t) %o A352157 if '0' not in s and min(str(c).lstrip('0')+s) == '3': %o A352157 yield n %o A352157 A352157_list = list(islice(A352157_gen(),20)) # _Chai Wah Wu_, Mar 28 2022 %Y A352157 Cf. A093138 \ {1} (subsequence), A350814. %Y A352157 Similar with smallest digit k: A352154 (k=0), A352155 (k=1), A352156 (k=2), this sequence (k=3), A352158 (k=4), A352159 (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9). %K A352157 nonn,base %O A352157 1,1 %A A352157 _Bernard Schott_ and _Robert G. Wilson v_, Mar 19 2022