This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352159 #23 Apr 05 2022 09:40:24 %S A352159 2,18,20,132,148,180,200,1320,1480,1800,2000,13008,13200,14544,14800, %T A352159 18000,20000,130080,132000,145440,148000,180000,200000,1300800, %U A352159 1320000,1454400,1480000,1734375,1800000,2000000,11521152,12890625,13008000,13200000,14544000,14800000 %N A352159 Numbers m such that the smallest digit in the decimal expansion of 1/m is 5, ignoring leading and trailing 0's. %C A352159 Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples). %C A352159 Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart from 1 (A003592) would be terms. %C A352159 If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive terms: 2, 18, 132, 148, 14544, ... %F A352159 A352153(a(n)) = 5. %e A352159 m = 148 is a term since 1/148 = 0.00675675675... and the smallest digit after the leading 0's is 5. %e A352159 m = 1320 is a term since 1/1320 = 0.000075757575... and the smallest digit after the leading 0's is 5. %t A352159 f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 5 &] %o A352159 (PARI) is(n) = my(d=#digits(n-1), m=9, r=10^d, x=valuation(n, 2), y=valuation(n, 5)); for(k=1, max(x,y)-d*(n==x=2^x*5^y)+znorder(Mod(10, n/x)), if(5>m=min(m, r\n), return(0)); r=r%n*10); m==5; \\ _Jinyuan Wang_, Mar 27 2022 %o A352159 (Python) %o A352159 from itertools import count,islice %o A352159 from sympy import multiplicity,n_order %o A352159 def A352159_gen(startvalue=1): # generator of terms >= startvalue %o A352159 for n in count(max(startvalue,1)): %o A352159 m2, m5 = multiplicity(2,n), multiplicity(5,n) %o A352159 k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1 %o A352159 c = k//n %o A352159 s = str(m*k//n-c*m).zfill(t) %o A352159 if s == '0' and min(str(c)) == '5': %o A352159 yield n %o A352159 elif '0' not in s and min(str(c).lstrip('0')+s) == '5': %o A352159 yield n %o A352159 A352159_list = list(islice(A352159_gen(),10)) # _Chai Wah Wu_, Mar 28 2022 %Y A352159 Cf. A351471. %Y A352159 Subsequence: A093136 \ {0}. %Y A352159 Similar with smallest digit k: A352154 (k=0), A352155 (k=1), A352156 (k=2), A352157 (k=3), A352158 (k=4), this sequence (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9). %K A352159 nonn,base %O A352159 1,1 %A A352159 _Bernard Schott_ and _Robert G. Wilson v_, Mar 25 2022 %E A352159 More terms from _Jinyuan Wang_, Mar 27 2022