cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352170 Primes p such that p+4, 3*p+4 and 3*p+8 are also prime.

Original entry on oeis.org

3, 13, 103, 223, 823, 2953, 7873, 11113, 11863, 13033, 13963, 16063, 22153, 23743, 24763, 27733, 30133, 31513, 34213, 35593, 39883, 41893, 43063, 50383, 51043, 54493, 62983, 65323, 66343, 68473, 71593, 72643, 87793, 88423, 98893, 101203, 106363, 110563, 127873, 134593, 136603, 158563, 164623, 165703
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 07 2022

Keywords

Comments

Members p of A023200 such that 3*p+4 is also in A023200.
Except for 3, all terms == 13 (mod 30).

Examples

			a(4) = 223 is a term because 223, 223+4 = 227, 3*223+4 = 673 and 3*223+8 = 677 are all prime.
		

Crossrefs

Intersection of A023200, A023209 and A023210.

Programs

  • Maple
    select(p -> isprime(p) and isprime(p+4) and isprime(3*p+4) and isprime(3*p+8), [3,seq(i,i=13..10^6,30)]);
  • Mathematica
    Select[Range[200000], AllTrue[{#, # + 4, 3*# + 4, 3*# + 8}, PrimeQ] &] (* Amiram Eldar, Mar 07 2022 *)
  • Python
    from sympy import sieve, isprime
    for p in sieve.primerange(0, 10**6):
        if(all(isprime(q) for q in [p+4, 3*p+4, 3*p+8])):
            print (p, end=", ") # Martin Ehrenstein, Mar 09 2022