cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352196 a(n) = number of steps for the standard mod-n Ackermann function to stabilize to a set consisting of only one value, or -1 if it does not stabilize.

Table of values

n a(n)
1 0
2 2
3 4
4 3
5 5
6 4
7 6
8 3
9 6
10 5
11 6
12 4
13 6
14 4
15 4
16 4
17 6
18 4
19 7
20 4
21 4
22 5
23 6
24 4
25 8
26 4
27 6
28 4
29 7
30 4
31 6
32 5
33 7
34 6
35 4
36 4
37 7
38 6
39 4
40 4
41 7
42 4
43 5
44 5
45 4
46 5
47 6
48 4
49 6
50 5
51 5
52 4
53 9
54 5
55 8
56 4
57 6
58 6
59 6
60 4
61 7
62 5
63 4
64 5
65 4
66 5
67 8
68 5
69 8
70 4
71 7
72 4
73 6
74 6
75 7
76 6
77 7
78 4
79 7
80 4
81 9
82 6
83 8
84 4
85 5
86 5
87 7
88 5
89 9
90 4
91 4
92 5
93 5
94 5
95 6
96 5
97 5
98 6
99 6
100 5
101 8
102 5
103 7
104 4
105 4
106 6
107 5
108 5
109 8
110 6
111 7
112 4
113 8
114 5
115 7
116 5
117 4
118 7
119 6

List of values

[0, 2, 4, 3, 5, 4, 6, 3, 6, 5, 6, 4, 6, 4, 4, 4, 6, 4, 7, 4, 4, 5, 6, 4, 8, 4, 6, 4, 7, 4, 6, 5, 7, 6, 4, 4, 7, 6, 4, 4, 7, 4, 5, 5, 4, 5, 6, 4, 6, 5, 5, 4, 9, 5, 8, 4, 6, 6, 6, 4, 7, 5, 4, 5, 4, 5, 8, 5, 8, 4, 7, 4, 6, 6, 7, 6, 7, 4, 7, 4, 9, 6, 8, 4, 5, 5, 7, 5, 9, 4, 4, 5, 5, 5, 6, 5, 5, 6, 6, 5, 8, 5, 7, 4, 4, 6, 5, 5, 8, 6, 7, 4, 8, 5, 7, 5, 4, 7, 6]