cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352219 a(n) is the least k such that A051037(n) | 60^k.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 4, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 2, 5, 3, 4, 3, 3, 2, 3, 4, 2, 3, 4, 2, 4, 3, 2, 3, 5, 3, 5, 3, 3, 2, 4, 4, 4, 3, 2, 6, 3, 4, 3, 4, 3, 2, 3, 5, 3, 5
Offset: 1

Views

Author

Michael De Vlieger, Mar 08 2022

Keywords

Comments

Also, number of digits in the sexagesimal expansion of terminating unit fractions 1/A051037.

Examples

			a(1) = 0 since A051037(1) = 1 | 60^0.
a(2) = 1 since A051037(2) = 2 | 60^1; 1/2 in base 60 is represented by digit 30 after the radix point ":", i.e., :30.
a(7) = 2 since A051037(7) = 8 | 60^2; 1/8 in base 60 is :7,30, etc.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.

Crossrefs

Programs

  • Mathematica
    With[{nn = 1024}, Sort[Flatten[Table[{2^a * 3^b * 5^c, Max[Ceiling[a/2], b, c]}, {a, 0, Log2[nn]}, {b, 0, Log[3, nn/(2^a)]}, {c, 0, Log[5, nn/(2^a*3^b)]}], 2]][[All, -1]] ]

Formula

a(n) ≍ n^(1/3), with lim sup a(n)/n^(1/3) being (6*log(2)*log(3)*log(5))^(1/3)/log(3) = 1.770... where A051037(n) is a power of 3 and the lim inf being (6*log(2)*log(3)*log(5))^(1/3)/log(60) = 0.4749... where A051037(n) is a power of 60. - Charles R Greathouse IV, Mar 08 2022