This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352237 #10 Nov 16 2023 12:54:20 %S A352237 1,1,4,37,532,9994,226252,5910445,173581060,5634589906,199792389160, %T A352237 7671942375898,316936631324368,14011781050744984,660054967923455212, %U A352237 33008607551445324157,1746771084107236755604,97536010045722766992778,5731874036042145864368824 %N A352237 G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 3*x*A'(x)). %H A352237 Vaclav Kotesovec, <a href="/A352237/b352237.txt">Table of n, a(n) for n = 0..378</a> %F A352237 G.f. A(x) satisfies: %F A352237 (1) [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1) * A(x)^(3*n+1) for n >= 1. %F A352237 (2) A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)). %F A352237 (3) A'(x) = A(x) * (1 + x*A(x)/(1 - A(x))) / (3*x). %F A352237 (4) A(x) = exp( Integral (1 + x*A(x)/(1 - A(x)))/(3*x) dx ). %F A352237 a(n) ~ c * 3^n * n! * n^(4/3), where c = 0.0543186200722307001992331... - _Vaclav Kotesovec_, Nov 16 2023 %e A352237 G.f.: A(x) = 1 + x + 4*x^2 + 37*x^3 + 532*x^4 + 9994*x^5 + 226252*x^6 + 5910445*x^7 + 173581060*x^8 + ... %e A352237 such that A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)). %e A352237 Related table. %e A352237 The table of coefficients of x^k in A(x)^(3*n+1) begins: %e A352237 n=0: [1, 1, 4, 37, 532, 9994, 226252, ...]; %e A352237 n=1: [1, 4, 22, 200, 2717, 48788, 1069122, ...]; %e A352237 n=2: [1, 7, 49, 462, 6069, 104664, 2219784, ...]; %e A352237 n=3: [1, 10, 85, 850, 11020, 183832, 3777355, ...]; %e A352237 n=4: [1, 13, 130, 1391, 18083, 294203, 5869734, ...]; %e A352237 n=5: [1, 16, 184, 2112, 27852, 445632, 8659920, ...]; %e A352237 n=6: [1, 19, 247, 3040, 41002, 650161, 12353059, ...]; ... %e A352237 in which the following pattern holds: %e A352237 [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1) * A(x)^(3*n+1), n >= 1, %e A352237 as illustrated by %e A352237 [x^1] A(x)^4 = 4 = [x^0] 4*A(x)^4 = 4*1; %e A352237 [x^2] A(x)^7 = 49 = [x^1] 7*A(x)^7 = 7*7; %e A352237 [x^3] A(x)^10 = 850 = [x^2] 10*A(x)^10 = 10*85; %e A352237 [x^4] A(x)^13 = 18083 = [x^3] 13*A(x)^13 = 13*1391; %e A352237 [x^5] A(x)^16 = 445632 = [x^4] 16*A(x)^16 = 16*27852; %e A352237 [x^6] A(x)^19 = 12353059 = [x^5] 19*A(x)^19 = 19*650161; ... %e A352237 Also, compare the above terms along the diagonal to the series %e A352237 B(x) = A(x*B(x)^3) = 1 + x + 7*x^2 + 85*x^3 + 1391*x^4 + 27852*x^5 + 650161*x^6 + 17204220*x^7 + ... %e A352237 where B(x)^3 = (1/x) * Series_Reversion( x/A(x)^3 ). %o A352237 (PARI) /* Using A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)) */ %o A352237 {a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 3*x*A' + x*O(x^n)) ); %o A352237 polcoeff(A,n)} %o A352237 for(n=0,20, print1(a(n),", ")) %o A352237 (PARI) /* Using [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1)*A(x)^(3*n+1) */ %o A352237 {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); %o A352237 A[#A] = polcoeff((x*Ser(A)^(3*(#A)-2) - Ser(A)^(3*(#A)-2)/(3*(#A)-2)),#A-1));A[n+1]} %o A352237 for(n=0,20, print1(a(n),", ")) %Y A352237 Cf. A088715, A286797, A317352, A352235, A352236, A352238. %K A352237 nonn %O A352237 0,3 %A A352237 _Paul D. Hanna_, Mar 08 2022