This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352242 #15 Feb 10 2025 12:06:06 %S A352242 7,52,19,189,112,37,496,351,196,61,1075,832,567,304,91,2052,1675,1264, %T A352242 837,436,127,3577,3024,2425,1792,1161,592,169,5824,5047,4212,3325, %U A352242 2416,1539,772,217,8991,7936,6811,5616,4375,3136,1971,976,271,13300,11907,10432,8869,7236,5575,3952,2457,1204,331 %N A352242 Regular triangle T(n,k) = (n-k)*(n^3-k^3) for n>=2 and 1 <= k <= n-1, read by rows. %H A352242 Michael De Vlieger, <a href="/A352242/b352242.txt">Table of n, a(n) for n = 2..11176</a> (rows n = 2..150, flattened) %F A352242 T(n,k) = A055461(n,k)*A132111(n,k). - _R. J. Mathar_, Feb 10 2025 %e A352242 Triangle begins: %e A352242 7; %e A352242 52, 19; %e A352242 189, 112, 37; %e A352242 496, 351, 196, 61; %e A352242 1075, 832, 567, 304, 91; %e A352242 2052, 1675, 1264, 837, 436, 127; %e A352242 ... %t A352242 Table[(n - k) (n^3 - k^3), {n, 2, 11}, {k, n - 1}] // Flatten (* _Michael De Vlieger_, Mar 09 2022 *) %o A352242 (PARI) row(n) = vector(n-1, k, (n-k)*(n^3-k^3)); %Y A352242 Cf. A003215 (right diagonal), A138849 (left border). %Y A352242 Cf. A352243, A352244. %Y A352242 Cf. A055461, A132111. %K A352242 nonn,tabl,easy %O A352242 2,1 %A A352242 _Michel Marcus_, Mar 09 2022