cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352249 Emirps that can be written as p*q+p+q where p and q are emirps.

Original entry on oeis.org

1439, 1511, 3023, 14447, 16127, 16547, 16883, 19763, 30059, 33623, 35099, 35327, 36251, 38219, 39359, 72911, 75239, 76463, 78623, 94559, 96431, 100799, 103511, 107603, 108191, 108863, 110807, 118583, 119039, 119363, 120539, 121727, 126359, 127679, 128879, 129959, 132299, 132887, 134999, 136403
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 17 2022

Keywords

Examples

			a(3) = 3023 is a term because 3023 = 17*167+17+167 and 3023, 17 and 167 are emirps.
		

Crossrefs

Cf. A006567.

Programs

  • Maple
    revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc:
    isemirp:= proc(p) local r;
       if not isprime(p) then return false fi;
       r:= revdigs(p);
       r <> p and isprime(r)
    end proc:
    E:= select(isemirp, [seq(ithprime(i),i=1..10^4)]):
    nE:= nops(E): N:= E[1]*E[-1]+E[1]+E[-1]:
    S:= {}:
    for i from 1 to nE do
      for j from i+1 to nE do
        x:= E[i]*(E[j]+1)+E[j];
        if x > N then break fi;
        if isemirp(x) then S:= S union {x} fi;
    od od:
    sort(convert(S,list));