This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352264 #11 Mar 10 2022 17:33:26 %S A352264 377,737,773,1377,1737,1773,3077,3177,3707,3717,3770,3771,3889,3898, %T A352264 3988,4689,4698,4869,4896,4968,4986,5677,5767,5776,6489,6498,6577, %U A352264 6668,6686,6757,6775,6849,6866,6894,6948,6984,7037,7073,7137,7173,7307,7317,7370,7371,7567,7576 %N A352264 Integers that need 6 iterations of the map x->A352172(x) to reach 1. %e A352264 377 -> 3176523 -> 54010152000 -> 8000000 -> 512 -> 1000 -> 1. %t A352264 f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[7576], q[#, 6] &] (* _Amiram Eldar_, Mar 10 2022 *) %o A352264 (PARI) f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172 %o A352264 isok6(n) = {for (k=1, 6, n = f(n); if ((n==1), return(k==6)););} %o A352264 (Python) %o A352264 from math import prod %o A352264 def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0') %o A352264 def ok(x, iters=6): %o A352264 i = 0 %o A352264 while i < iters and x != 1: i, x = i+1, A352172(x) %o A352264 return i == iters and x == 1 %o A352264 print([k for k in range(7577) if ok(k)]) # _Michael S. Branicky_, Mar 10 2022 %Y A352264 Cf. A352172. Subsequence of A351876. %Y A352264 Cf. A352260, A352261, A352262, A352263, A352265, A352266, A352267, A352268. %K A352264 nonn,base %O A352264 1,1 %A A352264 _Michel Marcus_, Mar 10 2022